Найди себя - Женский портал

Бесконтактный генератор на велосипед своими руками. Электрогенератор из велосипеда Генератор бесконтактный для велосипеда

Генератор на велосипеде — вещь незаменимая в дали от благ цивилизации. Зарядить телефон, ночное освещение дороги, послушать музыку на ходу, подключить навигатор или GPS-трекер — да, мало ли для чего понадобится электричество в дороге.

СТАРИННЫЙ ВЕЛОГЕНЕРАТОР

Школота не помнит о первых велогенераторах появившихся вместе с «Камами» и «Салютами»:

Крепится такой генератор на вилку и прижимается валом к боковой поверхности колеса, за счет чего может выдавать напряжение до 7 вольт и мощность в 5 ватт.
Немного, но для фары вполне достаточно. Подключить такой генератор напрямую для зарядки телефона или MP3 проигрывателя не получится, необходим преобразователь который выдаст на выходе стабильных 5 вольт. Короче, без доработки, для современных девайсов он не годится.

Хотя жаль, вещь надежная, сделано на века. До сих пор на блошинном рынке можно купить такой велогенератор в рабочем состоянии. По мощности превосходит даже следующий велогенератор от известного велосипедного брэнда SHIMANO.

ВТУЛОЧНЫЙ ВЕЛОГЕНЕРАТОР

Электрогенератор от SHIMANO достаточно дорогая игрушка. Есть определенные сложности в установке, например нужно переспицовывать переднее колесо для установки такого генератора. Напряжение выдает не стабилизированное, т.е. электронные устройства запитать напрямую так же не получится — нужен преобразователь напряжения . А не какой то там, делитель из двух резисторов как пишут в разных некомпетентных источниках.

Велогенератор Shimano AlfineDH-S701 на колесе

Напряжение выдает 6 вольт, мощность 2,4 Ватта. Вполне пригоден для питания фары.

Самый дешевый втулочный генератор SHIMANO стоит от 35$.

Посмотрите видео о проверке характеристик SHIMANO DH-3N30:

Изобретение Китайского велопрома, появился не так давно. Оригинальная идея снимать энергию с цепи велосипеда и встроенный преобразователь напряжения позволят подключить на зарядку телефон, MP3 плейер или другое устройство расчитаное на питание с USB разъема. Встроенный небольшой аккумулятор позволяет выдавать стабильное напряжение 5 вольт и ток до 1 Ампера.

ЦЕПНОЙ ВЕЛОГЕНЕРАТОР на вилке

Минусы этого велогенератора — дополнительный шум и ненадежное крепление на задней вилке велосипеда.

Посмотрите видео о ЦЕПНОМ ВЕЛОГЕНЕРАТОРЕ:

Материалы по теме:

Как проверить и настроить велокомпьютер

После установки и подключения велокомпьютера столкнулся с проблемой, не меняются показания, т.е., не работает датчик который устанавливается на переднюю вилку велосипеда. Ну и по результату моей работы решил...


При использовании обычных «динамок» для велосипеда всегда возникает вопрос их долговечности. Ведь в таком устройстве вращается ротор, вследствие чего в подшипниках (или втулках) возникает трение, которое впоследствии разрушает генератор. Также лишняя сила трения приводит к потере энергии, то есть велосипед катиться уже не так далеко и нужно прикладывать больше усилий, чтобы его разогнать.

Выходом из этой ситуации может стать использование бесконтактного генератора. В таком устройстве нет вращающихся деталей, и оно может работать практически вечно. Как правило, роль ротора выполняет само колесо велосипеда, ну а статор крепится к раме или вилке. Стоимость таких генераторов довольно велика, поэтому есть смысл попробовать создать его самому.

Ниже будет рассмотрен простейший способ создания бесконтактного генератора для велосипеда. Но это лишь модель , принцип, который можно брать для создания подобных самоделок .

Материалы и инструменты для самоделки:
- мощный магнит (автор использует неодимовый от жесткого диска);
- три катушки (можно сделать самому);
- задний фонарь тремя светодиодами;
- конденсатор на 4700 нФ;
- передняя фара (с пятью белыми светодиодами);
- двойной переключатель от компьютерного блока питания;
- два винта с гайками и шайбами (для крепления магнита к колесу);
- отвертки и гаечные ключи, паяльник, изолента;
- провода, переключатели и другие мелочи.


Процесс изготовления генератора:

Шаг первый. Установка элементов генератора на велосипед
Все работает по очень простой схеме. К колесу велосипеда с помощью двух винтов и гаек крепится мощный неодимовый магнит от жесткого диска компьютера (Автор использует три магнита, это позволяет убрать вибрации. Можно использовать и больше). Напротив него к вилке велосипеда на минимальном расстоянии размещается катушка, при прохождении возле нее магнита в ней возникает ток. У автора катушки три, одна нужна для работы заднего фонаря, а две для работы переднего. Так как ток получается импульсным, то при езде фонари будут мигать. Чем ближе магнит будет проходить возле катушки, тем больше она сможет выработать энергии.


Катушки можно намотать как самому, так и найти уже готовый, для этих целей подойдут старые реле. В идеале сопротивление катушки должно составлять 100-200 Ом, автор же использует две катушки по 600 Ом и уверяет, что все работает отлично. Чем выше будет сопротивление катушки, тем больше она будет вырабатывать энергии, но при этом снижается КПД из-за потерь в катушке. Желательно придумать для катушек какой-то корпус, либо иначе защитить их от попадания воды и грязи.
Если все сделано верно, то при вращении колеса катушки уже будут вырабатывать импульсное напряжение.





Шаг второй. Подключаем задний фонарь
Передний и задний фонари в системе абсолютно независимые. Задний фонарь питается всего от одной катушке. Для того чтобы немного стабилизировать напряжение, в схеме предусмотрен конденсатор на 4700 нФ. Исходное напряжение здесь составляет 2.2 Вольта. Как именно генерируется напряжение катушками, можно посмотреть на осциллографе.
При полном обороте колеса должно быть три импульса, так как в системе установлено три магнита.





Чтобы подключить фонарь, его нужно разобрать. Из него нужно извлечь батарейки, поскольку они тут более не понадобятся. Вместо батареек в фонарь нужно установить конденсатор. После того как фонарь будет собран, его можно установить на велосипед и затем с помощью двужильного провода подключить к одной из катушек. При вращении колеса задний фонарь должен начать мигать.















Шаг третий. Подключение переднего фонаря
Передняя фара питается от двух катушек, здесь автор установил пять светодиодов белого цвета. Схема устроена таким образом, что при езде передняя фара также будет мигать. Здесь не используется конденсатор, но его можно установить параллельно со светодиодом «3», потому что на него никогда не подается отрицательное напряжение. Таким образом, при езде один светодиод будет постоянно гореть, а три мерцать. Катушки не вырабатывают энергию одновременно, если их подключить последовательно, то одна катушка будет поглощать часть энергии другой, в этой схеме все работает иначе.









Ну а далее все подключается так, как и в случае подключения заднего фонаря. После сборки можно пробовать протестировать систему. Важно понимать, что чем быстрее будет двигаться велосипед, тем больше генератор будет вырабатывать энергии, а это может привести к перегоранию светодиодов. Так что на будущее важно придумать схему, которая будет ограничивать подачу тока на светодиоды.


Идея о создании этого велогенератора родилась в тот момент, когда заряд у аккумуляторов полностью истощился. Если вы хотите, чтобы фонарь на вашем велосипеде ярко освещал вам путь, и при этом не желаете иметь хлопот с перезарядкой или покупкой батарей – этот материал для вас!



Краткое описание проекта:
- Отсутствие батарей! Энергия будет накапливаться в двух суперконденсаторах емкостью по 100Ф и рабочим напряжением 2,7В.
- Зарядка займет несколько минут, но фонарь будет светить максимально ярко, как только вы начнете крутить педали.
- Прежде чем фонарь начнет тухнуть с момента остановки должно пройти не менее 15 минут (например, при остановке на светофоре или при другой ситуации, когда генератор не работает). Мощный светодиод на 1Вт имеет рабочее напряжение равное 3,5В. Приняв это во внимание и используя нужные резисторы, можно изменять этот временной промежуток с 4 до 30 минут. Светодиоды потребляют ток до 350мА, конструкция в примере питается от тока 350мА и при этом свет остается достаточно ярким для того, чтобы ослеплять водителей.
- Генератор обеспечивает освещение и при этом сохраняет заряд в конденсаторах. В примере был использован шаговый электродвигатель от матричного принтера. С помощью мультиметра было определено, что он может вырабатывать ток силой до 500мА.
- Еще одним преимуществом является то, что конденсаторы являются саморегулирующимися. Это значит, что они не будут перегружены при зарядке.


Прежде всего, для сборки велогенератора вы должны найти подходящий для наших целей шаговый двигатель. Вам нужен мотор с очень низким сопротивлением в катушках. В примере использован двигатель, на наклейке которого указаны 2,88В и 2,4А, с сопротивлением в катушках 1,2Ом. На испытаниях этот мотор выдавал ток силой 500мА при 400 об/мин. При езде на велосипеде при скорости 15 км/ч, генератор будет делать от 160 до 200 оборотов в минуту. Это означает, что мотор надо установить рядом с втулкой заднего колеса для снижения усилия на его вращение, в отличие от старого динамо, рассчитанного на 1000 об/мин.
Во-вторых, вам нужно будет приобрести пару суперконденсаторов о которых шла речь выше.
В-третьих, вам также понадобятся:
- Импортные диоды 1N4004 (8шт) – они преобразуют переменный ток, выработанный двигателем, в постоянный.
- Стабилизатор напряжения LM317T (1шт).
- Керамический конденсатор 0,1мкФ (1шт).
- Резисторы 240Ом и 820Ом 0,25Вт для стабилизатора напряжения, которые дадут нам ток 5,5В, необходимый для конденсаторов. Это значение не должно быть превышено!
- Светодиод мощностью 1Вт (1шт).
- Резистор для светодиода 11Ом 0,25Вт (1шт), даст ток силой около 160мА.

Вот список того, что также понадобится:
- Корпус фары для того, чтобы вставить туда светодиод.
- Небольшой корпус для защиты конденсаторов от повреждений.
- Провода.
- Отрезок пластиковой трубы диаметром 10см шириной около 2,5см. Он будет закреплен эпоксидной смолой на спицах колеса.
- Резиновый шкив или колесо для двигателя диаметром 5см.
- Различные инструменты, в том числе паяльник.

Приступим к сборке нашего велогенератора.


Во-первых, я не озаботился созданием печатной платы, а просто спаял все компоненты схемы вместе, после чего залил все эпоксидным клеем для защиты.
У двигателя в примере имеется шесть проводов, два из которых использованы не будут (Com), а другие четыре, с обмоток – и есть те, которые нам понадобятся.




Спаяв диоды таким образом, как показано на схеме, мы получим параллельную схему из двух диодных мостов, которая преобразует переменный ток в постоянный. Припаяйте конденсатор между «плюсом» и «минусом», это стабилизирует регулятор напряжения. После этого припаяйте на место LM317 и резисторы. Установите светодиод и токоограничивающий резистор в корпусе фары. Соедините проводами фару с конденсаторами, включив в цепь между ними выключатель, и далее – со стабилизатором напряжения.

Последовательность соединения:
Шаговый двигатель - Стабилизатор напряжения - Конденсаторы - Выключатель - Фара






Теперь приступим к монтажу двигателя на велосипед. Для фиксации мотора используйте хомуты для труб, которые можно закрепить в отверстиях под дисковые тормоза. Резиновое колесико двигателя должно бегать по поверхности секции пластиковой трубы диаметром 10см. Эта секция должна быть закреплена при помощи эпоксидного клея и клеящей ленты, но, возможно, потребуются резьбовые хомуты для более надежного крепления – это предупредит проскальзывание резинового колесика велогенератора по ее поверхности.

Здравствуйте, дорогие соратники! Предлагаю вашему вниманию экологически чистый источник электроэнергии.
По роду своей деятельности мне неоднократно приходилось решать задачи энергообеспечения удалённых объектов. Однако применяемые методы по финансовым соображениям для меня не приемлемы. Остаётся опыт.
Планируя резервирование электрообеспечения своего «объекта» я исходил из доступных мне технических и финансовых возможностей: когда кончится электричество в одном фидере я переключаюсь на другой (АВР), накроется вся внешняя сеть – есть бензиновый генератор, закончится горючее (ну, или для его экономии) – солнечные батареи. В качестве резерва – 6 штук разномастных аккумуляторов от автомобилей («паспортной» ёмкостью от 44 до 115 А*ч). Ёмкость у них конечно уже не та, что в молодости, но для малых нагрузок – вполне пойдут (использую так же в качестве пусковой батареи для реанимации замёрзших авто).
Минимальная суммарная мощность потребителей зимой – 100 Вт (котловая автоматика, циркуляционный насос и 2-3 LED-светильника). В случае острого дефицита бензина одной солнечной благодатью я столько не обеспечу (короткий зимний день + снег). Ну, или надо увеличивать площадь солнечных батарей (дороговатое удовольствие).
Идея создания простого резервного источника электричества «из того, что под рукой» была давно. Вкладывать немалые по моим меркам деньги в то, что может никогда не понадобиться, я считаю не разумным.
Итак имеются: б/у автомобильные аккумуляторы в ассортименте, б/у генератор 80А (от десятки ВАЗ, менял с своё время на более мощный), велосипед сына. И ноги. Ну, и конечно, руки.


Сын сделал из кусков фанеры подставку под заднее колесо. Гайки оси заднего колеса заменили на «пэги» (опоры для ног, используются при выполнении велотрюков). С помощью кусков металлического профиля и шпильки М8 закрепили на заднем колесе генератор. Подключили батарею и начали её заряжать.


Ага! Щаз! Силы не хватает. Начал разбираться и считать. Реле-регулятор держит (старается) 14,5 В, зарядный ток АКБ – 4-5А. Итого больше 70 Вт. С учётом потерь педали-цепь-покрышка-шкив надо, наверное ещё столько же. Вики сообщает, что это малореально – я ни разу не спортсмен.
Надо как-то уменьшать мощность. Зарядный ток зависит от конструкции (размеров) аккумулятора, тут ничего не изменишь – используем то, что есть. Остаётся напряжение. Вспоминаю, что в мототехнике было 6 Вольт. Снять с 12-то вольтового генератора 6 вольт можно, используя подходящее реле напряжения вместо штатного автомобильного. А 12-ти вольтовую батарею заряжать за два захода, «разделив» её пополам. Это позволит вдвое уменьшить усилие на педалях за счёт двойного увеличения времени их вращения.
В использованном мной аккумуляторе перемычка между третьей и четвёртой банками находится как раз под пробкой (если помните раньше перемычки были снаружи, сейчас встречал такие только на грузовых). Нашёлся 100-мм саморез, испачканный в силиконе (прочищал носик пистолета), Силикон – защита железного самореза от кислоты, вернее наоборот – электролита от посторонней железяки. Медленно, аккуратно, с усилием закрутил его в перемычку (тут главное не перестараться и не прокрутить насквозь – можно замкнуть пластины в этой банке) и получил третий контакт. Надо помнить, что он является плюсовым, если работает в паре с штатным «минусом» и минусовым, если в родным «плюсом».


Переделал штатное реле-регулятор в простой щёточный узел (откусил ножки реле, припаял провода), установил РР1 от ИЖака и процесс пошёл! Мотоциклетное реле держало напряжение не выше 7,5 В (среднее ок. 7 В), средний ток заряда ок.4 А. Усилие на педалях нормальное, для моего не тренированного организма. В общем, всё работает.
Однако, как нас учили на занятиях по МЛ-философии: практика – критерий истины! Необходимо оценить практическую ценность этого источника энергии. Методика оценки была предложена следующая: контрольный аккумулятор подключается к аварийному освещению пока последнее не погаснет. После этого батарея заряжается педальным способом в течении одного часа и вновь подключается к освещению. Отношение времени зарядки к времени работы освещения может являться параметром оценки эффективности системы.


Система аварийного освещения – светодиодные ленты (остались от ремонта квартиры) общей длиной 5,7 м, приклеены к направляющей кран-балки. Рабочее напряжение от 12,5 В до 8 В (среднее 10 В), ток 0,8 А. Средняя потребляемая мощность 8 Вт. Если принять, что из генерируемой мощности 28 Вт (7 В * 4 А) удастся «запасти» 20 Вт ожидаемое время работы системы аварийного освещения ок. 2,5 часов.
Предварительно разряженный (до 7,5 В под нагрузкой светодиодной лентой) аккумулятор заряжался 40 минут. Педали крутили по очереди с сыном по 5 минут – не лёгкое дело оказалось. 20 минут одну половину батареи и 20 минут другую.


После чего подключили к нему аварийное освещение и начали ждать. Тут меня ждало горькое разочарование – мои расчёты оказались не верны. После двух с половиной часов поехали домой, оставив светодиоды включёнными. Утром, через 12 часов заехал проверить – светятся, заразы. Ещё через 8 часов уже почти не светились – напряжение под нагрузкой упало до 7,5 В.
В общем, после 40-минутной подзарядки велогенератором время работы составило около 20 часов. Где-то я ошибся  Но главное – результат достигнут. Имея подобный аппарат можно обеспечить себя электроэнергией, достаточной для скромного освещения и работы не очень мощных приборов. Час велотренажёра – сутки со светом
Практические советы для желающих повторить опыт:
Сильно желателен велосипед с переключением скоростей – начнёте вы на одной скорости, заканчивать будете на другой.
Поменяйте покрышки на колёсах местами. Задняя покрышка имеет развитой протектор, по которому скачет шкив генератора, постоянно подпрыгивает и теряет привод.
Не используйте полупроводниковое реле-регулятор – обмотка возбуждения автомобильного генератора рассчитана на большую мощность, нежели выходной каскад мотоциклетного реле. Я таким образом сжёг релюху от Явы.

Необходимо контролировать процесс зарядки по вольтметру (напр. не менее 6,5-7 В), амперметру (± тока) или по контрольной лампочке (некоторые реле позволяют установить её).
Если остановились отдохнуть – снимите клемму с аккумулятора, разрядка через реле с генератором довольно быстро сожрёт ваши труды.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении