Найди себя - Женский портал

Энергоэффективные здания и сооружения. Класс энергетической эффективности здания. Классы энергоэффективности новых и эксплуатирующихся строительных объектов

Все мы хотим жить в комфортном доме, где всегда будет тепло, несмотря на погоду за окном. Но мало кто знает, что это зависит от энергоэффективности здания, которая определяется еще на стадии составления проектной документации. В последние годы государство стремится разработать новые требования к этому показателю, которые должны заметно снизить количество потребляемых энергоресурсов на жизнеобеспечение того или иного сооружения. Дело в том, что данный фактор можно назвать определяющим, когда мы в глобальном смысле этого слова говорим об экологической обстановке в стране и мире. Многие государства уже на протяжении десятилетий ведут работу по повышению энергоэффективности зданий всех категорий назначения. Наша страна до некоторого времени оставалась в стороне от этого процесса, но постепенно тоже стала включаться в него. Сегодня в статье мы поговорим об энергоэффективности зданий и сооружений в принципе, а также о мерах по ее повышению.

Изучаем терминологию вопроса

Не каждый обыватель понимает, что именно подразумевается, когда мы говорим об энергоэффективности здания. Чаще всего данный термин путают с понятием энергосбережения. И хотя на самом деле они довольно близки по смыслу, но все же являют собой разные определения.

Под энергоэффективностью зданий и сооружений обычно понимается соотношение выраженного полезного эффекта от затраченных энергоресурсов к их количеству, необходимому для получения подобного результата.

Можно сказать, что при самом высоком классе энергоэффективности энергетических ресурсов затрачивается самое минимальное количество. Некоторые специалисты называют этот термин еще и целесообразным использованием имеющейся энергии.

Для того чтобы читатель в дальнейшем не путал данное определение с энергосбережением, уточним, что энергосбережение подразумевает уменьшение потребления энергии при тех же запросах. То есть для людей это связано с определенными ограничениями, тогда как высокая энергоэффективность здания дает возможность его жильцам функционировать в привычном режиме, но получать гораздо большую отдачу.

Ситуация с энергоэффективностью сегодня

Уже практически пятьдесят лет мировое сообщество пытается ввести новые стандарты энергоэффективности. Некоторые государства принимают специальные программы, которые позволяют существенно повысить данный коэффициент. Однако до сих пор мировая промышленность потребляет около половины всех энергоресурсов. Причем побочным эффектом данного процесса является выброс углекислого газа в атмосферу, который пытаются контролировать многочисленные объединения экологов. Сегодня международные организации приняли единый стандарт, включающий в себя пункты по энергоэффективности.

В мире существует три государства, чья экономика полностью базируется на потреблении большого количества энергоресурсов. Показатель внешнего валового продукта целиком зависит от этого фактора. К трем державам, попадающим в указанную категорию, кроме Китая и Соединенных Штатов, относится и наша страна. Она занимает в этом списке третье место.

Можно уточнить, что наша промышленность вместе с жилыми строениями потребляет более половины всех энергоресурсов Российской Федерации. Эта цифра является катастрофической, и ситуация дошла до такой степени, что требует немедленного решения. В связи с этим государство разрабатывает ряд мер и нормативов, которые будут регламентировать энергоэффективность производственных зданий и жилого сектора. О них мы поговорим немного позже.

Категория строений, подпадающих под действие новых государственных нормативов

Под свод правил (СП) энергоэффективности зданий попадают следующие строения:

  • жилой сектор (многоэтажное строительство в городах и других населенных пунктах);
  • строения, относящиеся к объектам социальной инфраструктуры;
  • складские помещения (температурный режим в них должен быть устновлен на уровне двенадцати градусов тепла и выше);
  • здания, предназначенные для хранения и ремонта техники (площадь от пятидесяти квадратов);
  • многоквартирные дома, чья высота не превышает трех этажей.

Примечательно, что все принятые нормативы регламентируют расчеты энергоэффективности зданий не только на этапе создания проектной документации. Свод правил контролирует весь процесс строительства вплоть до ввода здания в эксплуатацию. Таким образом, повышение энергоэффективности превращается в определенную стратегию, однако она не устанавливает точных показателей, на которые должны ориентироваться строители и проектировщики.

Здания, не попадающие под государственный закон об энергоэффективности

В законодательстве предусмотрены строения, которые никаким образом не могут регламентироваться указанными ранее сводами правил и нормативами. К ним можно отнести следующие объекты недвижимости:

  • здания, имеющие культовое значение;
  • памятники истории и культуры;
  • строения временного назначения, которые могут функционировать не более двух лет;
  • жилые дома, подпадающие под категорию индивидуального строительства (количество этажей не должно превышать трех);
  • дачные и садовые дома;
  • здания в категории "вспомогательное использование";
  • сооружения, которые стоят отдельно от других и по площади не превышают пятидесяти квадратов.

Сегодня все перечисленные категории строений можно вводить в эксплуатацию независимо от их энергоэффективности. Общественные здания и жилые сооружения, входящие в эту группу, в своей проектной документации не должны содержать никаких сведений об энергоэффективности. Причем это не будет препятствием для получения разрешения на строительство или эксплуатацию помещений.

Классы энергоэффективности зданий и базовые показатели

Под данным термином понимается энергетическая эффективность строения или оборудования в процессе его эксплуатации. Информация этого порядка обычно включается в паспорт энергоэффективности здания или оборудования.

На сегодняшний момент принято применять семь строения. Они обозначаются латинскими буквами от «A» до «G», где «А» - это самый высокий показатель, а «G» - самый низкий из всех имеющихся.

В последние годы отдельно определены и подклассы. Определить класс энергоэффективности здания по ним можно, если заглянуть в проектную документацию. Для категорий «A» и «В» существуют два вида подклассов: «+» и «++». Все эти нюансы необходимо учитывать при покупке какого-либо оборудования или в процессе строительства здания.

Примечательно, что все современные приборы и различные объекты должны иметь маркировку, обозначающую класс энергоэффективности. Ставится она производителем или комиссией, принимающей проектную документацию на здание промышленного либо жилого назначения.

Расчеты и определение здания происходят по определенной формуле. Она учитывает отклонения по нормативным и удельным величинам, при этом стоит иметь в виду и базовые величины. Расчет энергоэффективности здания жилого и промышленного объекта всегда начинается с определения базового уровня. За него принято брать класс «С».

Паспорт энергоэффективности здания

Мы не смогли обойти вниманием этот важный документ, имеющий непосредственное отношение к теме нашей сегодняшней статьи. Если вы имеете некоторое отношение к строительству, то должны знать, что этот важный документ необходим для того, чтобы ввести жилой объект или производственное строение в эксплуатацию.

Он подтверждает тот факт, что строение полностью соответствует всем принятым нормативам и требованиям, а также оснащено приборами учета энергоресурсов последнего поколения. Известно, что благодаря этому паспорту можно даже получить льготы по имущественному налогу. Под данную категорию попадают только те объекты, которые получают самый высокий класс энергоэффективности.

Интересно, что получать паспорт должны все новостройки и здания, подвергшиеся реконструкции либо капитальному ремонту. Документ опирается на проектные бумаги и расчеты, а также на выездное Оно включает в себя Благодаря ей всегда можно наглядно увидеть, в каких местах строение теряет тепло. В связи с этим выносятся рекомендации по устранению выявленных проблем. Если решить их невозможно, то принимается решение по присвоению класса энергоэффективности строения.

Любой паспорт оформляется по установленному стандарту, он числится как форма под номером тридцать пять и был утвержден приблизительно три года назад.

Документы, необходимые для оформления энергетического паспорта

Для того чтобы ввести строение в эксплуатацию, понадобится оформить на него паспорт. Об этом мы уже упомянули в статье, однако стоит учитывать, что данный документ невозможно составить без предоставления большого количества бумаг. Большая часть из них входит в проектную документацию.

В первую очередь комиссию будет интересовать архитектурная часть плана. В нее включаются планировки этажей, подвала и разрезы стен. При этом требуется указать толщину материалов и их полную характеристику. Чаще всего указанная информация содержится в полном объеме в утвержденном перед строительством проекте строения.

Кроме перечисленных данных, комиссии потребуются копии из нескольких разделов проекта. Все они будут касаться энергопотребления и сбережения. Специалисты рассмотрят вопросы вентиляции, отопления, водоснабжения, водоотведения и электроснабжения.

Если застройщик изначально предоставит всю документацию в полном объеме, то сроки оформления паспорта существенно сокращаются. С утвержденным документом можно обращаться в вышестоящие инстанции для того, чтобы ввести объект в эксплуатацию.

Снижение налога в зависимости от класса энергоэффективности

Если энергоэффективность жилого здания, сданного организацией в эксплуатацию, будет соответствовать самым высоким стандартам, то фирма имеет право на получение льготы по налогам на протяжении трех лет. Этот срок отсчитывается от даты ввода здания в эксплуатацию.

Для получения льготы необходимо предоставить всю проектную документацию и энергетический паспорт строения. Стоит учитывать, что на снижения налога могут претендовать только те здания, которым присвоены следующие классы энергоэффективности: «В», «В+», «В++», «А».

Для того чтобы комиссия могла принимать решение быстрее и проще, была разработана и утверждена таблица, в соответствии с которой принимаются решения об энергоэффективности многоквартирных домов. Она включает в себя практически все классы и их наименования. Мы приведем ее в виде следующего списка:

  • Очень высокий класс. Он обозначается буквами «А», «А+» и «А++». Данная категория подразумевает, что величина отклонения расчетной единицы от нормируемой измеряется в диапазоне от сорока до шестидесяти процентов со знаком минус.
  • Высокий. Обозначения «В» и «В+» свидетельствуют о том, что отклонение составляет от минус пятнадцати до минус сорока процентов включительно. Обычно подобных показателей можно добиться путем экономического стимулирования регионов.
  • Нормальный. Мы уже писали, что класс «С» принимается за базовый норматив, также к нему можно отнести и маркировку «С+» и «С-». Величина отклонения в данном случае колеблется в диапазоне плюсовых и минусовых показателей: от минус пятнадцати до плюс пятнадцати. Этому классу энергоэффективности должно соответствовать большинство строений.

Все перечисленные классы применяются в случаях строительства и проектировки новых зданий, а также реконструкции уже имеющихся.

Когда речь ведется об уже эксплуатирующихся строениях, то для них допустимы следующие классы энергоэффективности:

  • Пониженный. Он обозначается латинской буквой «D», и в данном случае величина отклонения составляет от пятнадцати до пятидесяти процентов в плюсе. Подобные строения при эксплуатации затрачивают большой объем энергоресурсов, поэтому в соответствии с российским законодательством их принято реконструировать.
  • Низкий. Если вы увидите в документах энергоэффективность здания, обозначенную буквой «Е», то знайте, что величина отклонения превышает пятьдесят процентов со знаком плюс. Такие сооружения при необходимости могут быть реконструированы, однако чаще всего они идут под снос.

В соответствии с приведенными данными, каждый застройщик может сориентироваться в том, получит ли он льготы по налогообложению.

Расчет энергоэффективности

Для составления проектной документации застройщик должен провести определенные расчеты по энергоэффективности промышленных зданий и объектов жилого сектора. Они состоят в определении количества потребляемой теплоэнергии для того, чтобы создать условия для жизнеобеспечения всех строений. Измеряется она в киловаттах на один квадратный метр за один год. Примечательно, что здания разного назначения подпадают под три категории энергопотребления.

Их можно привести в виде списка:

  • Нормативный. Данный уровень подразумевает энергопотребление строений при применении нормативной теплозащиты внешних ограждений.
  • Сравнительный. Он является неким усредненным вариантом. Для выведения этой величины обычно берутся данные по энергопотреблению разных зданий одного назначения.
  • Расчетный. Этот уровень определяется в процессе проектирования строения. Он основывается на сведениях об оборудовании, которое будет использоваться в процессе эксплуатации здания, режимах функционирования строения и тому подобных данных.

Примечательно, что если в проектной документации заложено использование разных видов энергоресурсов, то производить расчеты придется по каждой категории в отдельности.

На государственном уровне принята программа по повышению энергоэффективности зданий, которая включает в себя несколько уровней и пунктов. Причем их выполнение должно происходить на разных стадиях строительства, кроме этого, учитываются и этапы реконструкции, а также ввода в эксплуатацию.

В основном повысить энергоэффективность можно благодаря снижению теплопотерь. Обычно они довольно значительны. К примеру, в холодное время года около сорока процентов энергии уходит на обогрев уличного воздуха. Если взять это количество за сто процентов, то стены способствуют потерям сорока процентов тепла, и еще по двадцать процентов можно в равной степени разделить на дверные и оконные проемы, кровлю и вентиляционную систему вместе с подвальными помещениями.

Для того чтобы свести к минимуму потери тепла в зданиях, и разработаны меры по повышению энергоэффективности строений. Их можно коротко изложить в виде списка:

  • установка энергосберегающего профиля;
  • оснащение помещений радиаторами с индивидуальной системой контроля;
  • создание неразрывного контура теплоизоляции;
  • выбор долговечной теплоизоляционной системы;
  • использование специализированных входных дверей с теплоизоляционным профилем.

Кроме всего перечисленного, ежегодно вводятся и новинки, позволяющие в несколько раз повысить энергоэффективность строений жилого и промышленного назначения.

Инновационные предложения по повышению энергоэффективности

Сегодня в России проводятся всевозможные конференции, на которых молодые компании и их уже всемирно признанные конкуренты представляют свои разработки, направленные на уменьшение теплоотдачи зданий. В итоге при получении энергетического паспорта строение имеет все шансы получить более высокий класс энергоэффективности.

Некоторые разработки остаются без внимания, а вот другие успешно внедряются в производство. Подобная история случилась когда-то с энергосберегающими оконными профилями, которые сейчас повсеместно применяются в строительстве. Подчас они еще на заводе встраиваются в панели, что исключает неправильный монтаж, а, следовательно, и теплопотери.

Интересно, что в последние годы рассматривается предложение по учету экологических показателей в процессе оценки энергоэффективности строения. К примеру, многие компании заменяют свинцовые стабилизаторы на оконных профилях на другие, изготовленные из более безопасных материалов.

Не последнюю роль в повышении энергоэффективности играют и материалы, предусмотренные в строительстве здания. К примеру, современные газобетонные блоки позволяют соединять их максимально тонким швом. Тем самым снижаются риски теплопотери через соединительный раствор. Также недавно был представлен и особый клей, его применение делает любые теплопотери минимальными. Во многих случаях они сводятся к нулю.

Довольно часто инновационные разработки затрагивают и инженерные системы строения. В первую очередь это касается вентиляции и отопительных систем. Однако в последние годы оценку энергоэффективности проходят и лифты, ведь доказано, что потери энергии при использовании данных приспособлений в некоторых случаях достигают пятнадцати процентов. Специалисты советуют оценивать лифты не на производстве, а после монтажа в шахту здания. В этом случае информация будет максимально приближена к реальности.

Также хочется отметить, что идеи энергоэффективности пользуются большой популярностью. Если вести речь о жилом секторе, то квартиры, построенные с соблюдением современных технологий, пользуются большим потребительским спросом. В связи с этим можно надеяться, что комплексные технологии, направленные на повышение энергоэффективности, будут применяться повсеместно и станут одним из приоритетных направлений государственной политики в строительстве.

В настоящее время в Москве начато строительство высотных зданий. Известно мнение специалистов, что каждое высотное здание представляет собой уникальное явление, требующее тщательных фундаментальных разнохарактерных исследований специалистов, и не случайно Российская академия архитектуры и строительных наук (РААСН) дважды обсуждала этот вопрос на академических чтениях, проходящих под председательством академика А. П. Кудрявцева, президента РААСН.

Интерес к строительству высотных зданий в Москве вызван прежде всего экономическими соображениями. С точки зрения инвестора, увеличение на фундаменте количества квадратных метров выгодно, а поэтому и выгодно строительство высотных зданий. По этой же причине в Москве планируется строительство именно жилых высотных зданий, в отличие от других стран, где возводятся главным образом высотные здания общественного назначения. Следует отметить, что чем здание выше, тем оно дороже в эксплуатации. Эта проблема приобретает особенную актуальность в свете предстоящей жилищно-коммунальной реформы.

Одним из путей снижения эксплуатационных затрат является строительство энергоэффективных высотных зданий. Энергоэффективными называются такие здания, при проектировании которых был предусмотрен комплекс архитектурных и инженерных мероприятий, обеспечивающих существенное снижение затрат энергии на теплоснабжение этих зданий по сравнению с обычными (типовыми) зданиями при одновременном повышении комфортности микроклимата в помещениях. Методология проектирования энергоэффективного высотного здания должна основываться на системном анализе здания как единой энергетической системы. Представление энергоэффективного высотного здания как суммы независимых инновационных решений нарушает принципы системности и приводит к потере энергетической эффективности проекта.

Каждое высотное здание уникально и не может быть построено обычными темпами. Существующие здания прошли длительный период создания, в их проектировании участвовало большое число высококвалифицированных специалистов разного профиля. Высотные здания тем более требуют тщательной проработки еще на стадии проектирования. Например, проектирование и строительство самого высокого в Европе здания «Commerzbank» во Франкфурте-на-Майне, Германия, продолжалось восемь лет. В создании этого здания участвовали специалисты разных стран: архитектор — англичанин Норман Фостер (Norman Foster); конструкторы - английская фирма «Ove Arup&Partners» и немецкая «Krebs und Kiefer»; наружные ограждающие конструкции разрабатывались немецкими фирмами «Josef Gartner GmbH & Co. KG» и «Ingenieurgesellschaft Dr. Thomas Limmer mbH & Co. KG», а изготавливались итальянской компанией «Permasteelisa S.p. A.».

Рисунок 1. Треугольный замысел здания заключает в себе центральный атриум, который является частью системы естественной вентиляции

При проектировании высотных зданий также возникает проблема выбора материала конструкций здания. В США в качестве основного конструкционного материала обычно используется сталь, а в Европе - железобетон. По мнению академика В. И. Травуша, заместителя директора ЦНИИЭП им. Мезинцева, железобетонные конструкции по сравнению со стальными обладают тремя важными преимуществами: большей устойчивостью, обусловленной их большим весом; в железобетонных конструкциях быстрее затухают колебания; железобетонные конструкции более огнестойки. Именно высокие требования к огнестойкости ограничивают в Европе строительство высотных зданий с металлическими конструкциями, поскольку в случае их использования необходимо проводить дополнительные противопожарные мероприятия.

После строительства высотных зданий изменяется аэродинамика городской застройки и возникают сильные воздушные вихревые потоки, поэтому при проектировании высотных зданий требуются исследования их аэродинамики с учетом прилегающей городской застройки. Большое значение приобретают требования к сопротивлению воздухопроницанию конструкций, связанные с разностью давлений воздуха на наружной и внутренней поверхностях ограждений, существенно возрастающей с увеличением высоты. Традиционные окна не обеспечивают требуемое сопротивление воздухопроницанию, поэтому для высотных зданий необходимы специальные конструкции световых проемов.

Внутри высотных зданий также могут возникать сильные воздушные потоки (эффект аэродинамической трубы). Для их уменьшения должны применяться специальные решения - шлюзование входов в здание, шлюзование лестничных секций, высокая герметизация межэтажных перекрытий, герметизация мусоропроводов.

Большую проблему представляет обеспечение безопасности, достаточно вспомнить недавние события в Нью-Йорке. Сейчас специалисты говорят об определенных конструктивных недоработках зданий «World Trade Center», в частности, о недостаточной огнестойкости стального каркаса зданий. Однако обеспечение безопасности - это не только защита от воздушных атак. Например, механическую систему вентиляции высотных зданий необходимо оборудовать датчиками вредных веществ, которые можно распылить у воздухозаборных устройств, а также системой, автоматически отключающей в этом случае механическую вентиляцию.

Рисунок 3. Вход в здание

Уникальным примером решения проблем, возникающих при строительстве высотных зданий, является самое высокое в Европе здание «Commerzbank», построенное в Германии.

Здание «Commerzbank» во Франкфурте-на-Майне, строительство которого было завершено в мае 1997 года, является самым высоким зданием в Европе. Его высота составляет 259 метров, высота с антенной - 300 метров. Здание «Commerzbank» занимает 24-е место в мире по высоте. Ни одно другое европейское здание не входит в список пятидесяти самых высоких небоскребов мира. Однако сам по себе данный факт вряд ли привлек бы внимание специалистов к этому зданию.

Здание, разработанное британским архитектором сэром Норманом Фостером (Sir Norman Foster) и его студией «Foster and Partners» (Лондон), представляет собой радикальный пересмотр всей концепции строительства высотных зданий.

Рисунок 4. Зал на первом этаже

Большинство высотных зданий построено по традиционной американской модели: полностью кондиционируемые помещения, практически полное отсутствие естественного освещения, центральная организация построения здания и идентичные этажи. Новое здание «Commerzbank» существенно отличается от этой схемы: в нем используется главным образом естественное освещение и естественная вентиляция, имеется атриум, проходящий от уровня земли до самого верхнего этажа, и из каждого офиса или части здания открывается вид на город. Спирально по всему зданию расположены зимние сады высотой в четыре этажа - они улучшают микроклимат и создают совершенно иную рабочую обстановку.

На разработку концепции здания оказала влияние политическая и социальная атмосфера, сложившаяся после объединения Германии. Гармония с окружающей средой и энергетическая эффективность стали основными факторами при проектировании здания «Commerzbank». Реализация этих концепций позволила Норману Фостеру назвать данное здание «первым в мире экологичным высотным зданием». Как пишет Колин Дейвз (Colin Davies) в предисловии к книге «Commerzbank Frankfurt: Prototype for an Ecological High-Rise », революционный дизайн здания от «Foster and Partners» «…дает начало новой стадии в развитии экологичной, энергосберегающей и снижающей загрязнение архитектуре… Это здание создано как для сотрудников, так и для посетителей. Оно заключает в себе не только экономичную форму и эффективную планировку, но и качество пространства, физический и психологический комфорт, свет, воздух и вид на город, работу и отдых, а также ритм рабочего дня»

Рисунок 5. Схема конструкции наружных светопрозрачных ограждений:
1 - первый слой с щелевыми отверстиями;
2 – второй слой – оконный стеклопакет;
3 – солнцезащитные устройства – регулируемые жалюзи;
4 – отверстия вентилируемой прослойки

Немецкая «Партия зеленых» поддержала экологичность нового здания «Commerzbank». Поскольку «Commerzbank» при строительстве старался сохранить и защитить естественную окружающую среду при помощи инновационных конструктивных решений, городские власти дали разрешение на расширение проектной площади. На дополнительной земельной площади с восточной стороны высотного здания удалось расположить шестиэтажное здание, в котором разместились дополнительные офисные помещения, а также парковку. В результате банку «Commerzbank» удалось сосредоточить большинство своих офисов на данном участке земли и не приобретать дополнительных площадей в дорогом районе Франкфурта-на-Майне.

Архитектурно-планировочная концепция

Горизонтальная проекция башни представляет собой треугольник со скругленными вершинами и немного выпуклыми сторонами. Центральная часть здания, в которой обычно располагаются лифтовые шахты, занята огромным треугольным центральным атриумом, проходящим по всей высоте здания. Атриум является каналом естественной вентиляции для смежных офисных помещений здания (рис. 1). Норман Фостер называет центральный атриум «стеблем», а офисные этажи, расположенные вокруг атриума с трех сторон, - «лепестками».

Каждый этаж имеет три крыла, два из которых выделены под офисные помещения, а третье является частью одного из четырехэтажных зимних садов. Четырехэтажные сады - «зеленые легкие» здания, размещенные по спирали вокруг треугольной формы здания, обеспечивают для каждого яруса вид на растительность и устраняют большие объемы неразделенного офисного пространства.

Норман Фостер рассматривал растения как нечто большее, чем просто декорацию. Эти великолепные сады являются фундаментальным элементом в его концепции. Девять зимних садов по спирали окаймляют все здание: три расположены с восточной стороны, три - с южной и еще три - с западной стороны. В ботаническом аспекте растения отражают географическую направленность:

  • с восточной стороны - азиатская растительность;
  • с южной стороны - средиземноморская растительность;
  • с западной стороны - североамериканская растительность.

Открытые пространства садов высотой в четыре этажа обеспечивают внутренние офисные помещения достаточным количеством дневного света. Кроме этого, данные сады могут быть использованы сотрудниками для общения и отдыха - они создают ощущение пространства, а также являются частью сложной системы естественной вентиляции (рис. 2).

Лифты, лестничные марши и служебные помещения расположены в трех углах. Такое расположение позволяет сгруппировать офисы и зимние сады. Решетчатые балки, прикрепленные к колоннам, размещенным в трех углах здания, несут на себе каждый этаж и зимний сад. Такое решение позволило отказаться от колонн внутри здания и обеспечило конструкции дополнительную жесткость.

Рисунок 8. Схема воздушных потоков вокруг здания

53-этажное здание поднимается ввысь вместе с уже существующим зданием «Commerzbank». При этом Норману Фостеру удалось достичь сочетаемости старого и нового зданий посредством перестройки и обновления периметра граничащих зданий.

Главный вход в новое здание расположен с северной стороны, с площади Кайзерплац (Kaizerplatz). Попасть в здание можно по гигантской лестнице, покрытой стеклянной крышей (рис. 3). На первом этаже расположены отделения банков, магазины, рестораны и кафетерии, а также залы для проведения выставок и концертов (рис. 4).

Ступенчатая верхушка здания производит сильное впечатление даже на большом расстоянии. Силуэт здания создает четкий символ современного банковского района Франкфурта-на-Майне.

Ограждающие конструкции здания и солнцезащитные устройства

Для снижения затрат энергии на климатизацию здания, а также для организации естественной вентиляции светопрозрачные ограждения офисов здания сделаны двухслойными - практически уникальный прием в современном высотном строительстве. Внешняя оболочка (первый слой) имеет щелевые отверстия, через которые наружный воздух проникает в полости между слоями (рис. 5). Окна, в том числе и те, которые расположены на верхних этажах, могут быть открыты, что обеспечивает естественную вентиляцию непосредственно до уровня 50-го этажа. Окна, выходящие в атриум, также могут быть открыты.

Рисунок 9. Естественная вентиляция здания в зимний период (источник – официальный сайт студии «Foster and Partners»)

Снижение затрат энергии на отопление здания достигается использованием теплозащитного остекления с коэффициентом теплопередачи приблизительно 1,4–1,6 Вт/(м2.°C). Кроме этого, первый слой играет роль защитной оболочки, уменьшающей конвективный тепловой поток, направленный наружу. Зимой в ночное время пространство между внешней и внутренней оболочками фасада герметизируется, образуя статичную воздушную прослойку, обладающую хорошими теплоизоляционными свойствами.

Снижению затрат энергии на отопление способствуют и зимние сады, обеспечивающие дополнительные теплопоступления за счет аккумулирования тепла солнечной радиации. Снижение затрат энергии на охлаждение здания достигается путем использования герметичных двойных стеклопакетов, заполненных инертным газом и отражающих инфракрасное излучение. Такие стеклопакеты используются в зимних садах, а также в ненесущих стенах по периметру офисных помещений. При этом солнцезащитные устройства устанавливаются между стеклопакетом и внешней светопрозрачной оболочкой здания. При поступлении в здание солнечной радиации происходит ее первоначальное ослабление посредством внешней светопрозрачной оболочки.

Дальнейшее резкое уменьшение солнечной радиации осуществляется при помощи солнцезащитных устройств. Аэродинамика и система естественной вентиляции здания. Высотное здание разделяется по вертикали на четыре 12-этажных модуля, называемыми «деревнями». Каждый модуль имеет три 4-этажных зимних сада, соединенных вертикально посредством центрального атриума. Сады и атриум связаны для повышения эффективности естественной вентиляции (рис. 6). Каждый модуль контролируется собственной независимой установкой климатизации. Через каждые 12 этажей на границах модулей атриум разделен горизонтально для выравнивания давления и защиты от распространения дыма. Сады, атриум и офисные помещения по периметру имеют открываемые окна. Вентиляция офисов в первую очередь осуществляется естественным образом, но в здании также имеются установки механической вентиляции и охлаждаемые перекрытия с замоноличенными трубопроводами.

Рисунок 10. Расчетные значения наружных и внутренних температур в летний и переходный периоды при естественной вентиляции.

При разработке проекта вентиляции использовались методы компьютерного моделирования и аэродинамические исследования. Компания RPI (Roger Preston International) провела подробный климатический анализ, выполнила моделирование теплового режима здания и оценку комфортности микроклимата здания. Влияние ветрового напора на здание и воздушные потоки в атриуме исследовались в аэродинамической трубе (рис. 7), а результаты исследований использовались в ходе дальнейшего компьютерного моделирования.

Рисунок 11. Естественная вентиляция здания в летний период (источник - официальный сайт студии «Foster and Partners»).

Примерно в течение 2/3 всего года сотрудники банка могут регулировать уровень естественной вентиляции самостоятельно путем индивидуального открытия окон. Только при сложных погодных условиях система автоматического управления оборудованием климатизации задействует систему механической вентиляции. Благодаря такой схеме организации вентиляции энергопотребление в высотном здании «Commerzbank» на 30% ниже, чем в традиционных высотных зданиях таких же размеров. Естественная вентиляция здания «Commerzbank» осуществляется под действием гравитационных сил и под действием ветрового напора. Выбор ориентации здания от относительно преобладающего направления ветра позволил обеспечить достаточную естественную вентиляцию. Вентиляция внутренних зон здания может осуществляться при помощи механической системы, обеспечивающей минимальную кратность воздухообмена для обеспечения комфортных параметров микроклимата. Регулирование температуры помещений осуществляется отопительными установками, расположенными по периметру здания, и охлаждаемыми перекрытиями с замоноличенными трубопроводами. Внутренний (выходящий в атриум) фасад оборудован наклонно-поворотными окнами со встроенными выходными демпферами (маленькими поворотными окнами) и имеет одинарное остекление. Наружный двойной фасад состоит из одинарного и многослойного остекления, обеспечивающего солнцезащиту. Наружный воздух попадает в верхнюю часть каждого помещения сквозь вентилируемые полости в фасаде и выходит через жалюзи рядом с поворотными окнами.

При прямом солнечном облучении и безветренных днях (приблизительно 3% всех дней года) естественная вентиляция, возникающая в результате гравитационного напора, может быть четко измерена, поскольку температура увеличивается на каждом этаже на 1,5–3°С (при прямом солнечном излучении) или на 1°С на каждом этаже при днях с переменной облачностью.

Естественная вентиляция, возникающая под действием гравитационного напора, может быть неэффективна при переменной облачности только в том случае, если наружная температура значительно превышает температуру помещений. На рис. 8 показаны воздушные потоки, возникающие под действием ветрового напора. Из рисунка следует, что только треть здания обращена к наветренной стороне, а две трети здания - к подветренной стороне. Аэродинамические исследования, проведенные при средней скорости ветра во Франкфурте-на-Майне (приблизительно равной 4 м/с), а также для известных геометрических размеров здания, показали, что воздушные потоки, возникающие под действием ветрового напора, будут способствовать естественной вентиляции здания в течение всего года при открытии соответствующих элементов окон.

В зимний период (рис. 9) естественная вентиляция всех офисных помещений, расположенных по периметру здания, обеспечивает комфортные параметры микроклимата в помещениях, однако здесь необходимо обратить внимание на то, что механическая вентиляция позволяет обеспечивать комфортные параметры микроклимата при одновременной экономии энергии за счет утилизации тепла удаляемого воздуха. Естественная вентиляция внутренних (смежных с зимним садом) офисных помещений эффективнее, чем вентиляция офисов, расположенных по периметру здания, поскольку внутренние офисные помещения расположены рядом с зимними садами. Зимние сады действуют как термальные буферные зоны, в которых прямая или рассеянная солнечная радиация помогает обогревать все помещение. В переходный период, когда наружная температура колеблется в пределах от 5 до 15°C, механическая вентиляция не является необходимой из-за приемлемой температуры наружного воздуха.

Открытие окон наклонно-поворотного типа имеет смысл, когда сила ветра умеренная. Такое открытие окон создает кратность воздухообмена в помещении 4–6 1/ч. При высокой скорости ветра и температуре ниже 15°C окна необходимо держать закрытыми и следует использовать механическую систему вентиляции и дополнительный обогрев, а также, при необходимости, и увлажнение. Каждый находящийся в комнате может включить механическую вентиляцию и систему обогрева, а также открыть на определенное время окна для поступления свежего воздуха, вернувшись, таким образом, к системе естественной вентиляции.

На рис. 10 приведены расчетные значения наружных и внутренних температур в летний и переходный периоды при естественной вентиляции. Анализ температурных данных показывает, что в летнее время при безветренной погоде необходимо осуществлять дополнительную вентиляцию и охлаждение здания, поскольку в противном случае температура в комнатах будет превышать комфортную. В этот период времени окна зимних садов полностью открываются, забирая теплый наружный воздух при температурах около 32°C. В зимних садах наружный воздух охлаждается приблизительно на 0,5–1°C. Охлажденный естественным образом воздух движется через атриум и затем перемещается к следующему зимнему саду, где выходит из здания (рис. 11). В ночное время в преддверии жаркого летнего дня теплоемкие части здания охлаждаются посредством прохладного наружного воздуха, в то время как охлаждаемые перекрытия с замоноличенными трубопроводами поглощают и высвобождают тепловую энергию. Оборудование приблизительно 50% площадей помещений охлаждаемыми перекрытиями обеспечивает достаточную теплоемкость для создания прохладных температур в помещениях на следующий день в диапазоне от 21°C (8:00 утра) до 28,5°C (18:00 вечера) без использования воздушного кондиционирования. Здание «Commerzbank» дополнительно оборудовано системами механической вентиляции для обеспечения требуемых параметров микроклимата.

Уровень механической вентиляции и охлаждения может быть задан любым присутствующим в здании. В результате наблюдений, проводимых в данном здании в течение года, было установлено, что частота использования естественной вентиляции в дневное время достигла 70% (рис. 12). Только в 9% времени года наружная дневная температура повышалась настолько, что действительно было необходимо применять воздушное кондиционирование. В 21% времени года целесообразно дополнительно использовать механическую вентиляцию для экономии энергии посредством утилизации тепла удаляемого воздуха. Тем не менее, естественная вентиляция возможна и в данный период. Исследования различных способов ночного охлаждения здания дали следующее процентное распределение, построенное по совокупному объему часов эксплуатации (рис. 13):

  • использование механической вентиляции и дополнительно охлажденного воздуха - около 15%;
  • использование механической вентиляции и наружного воздуха - 12%;
  • охлаждение путем естественной вентиляции - около 73%.

На рис. 14 представлено сравнение энергопотребления для зданий с естественной системой вентиляции и для аналогичного по объему здания с традиционной системой кондиционирования воздуха. Система климатизации здания Система климатизации здания включает в себя систему механической вентиляции с утилизацией тепла удаляемого воздуха, охлаждаемые теплоемкие перекрытия с замоноличенными трубопроводами, конвекторы для обогрева помещений офисов (рис. 15) и обогреваемые металлические конструкции светопроемов ограждений атриума (рис. 16).

Охлаждаемые теплоемкие перекрытия с замоноличенными трубопроводами используются для естественного охлаждения здания вместо традиционной системы кондиционирования с присущими ей недостатками. Обогрев помещений осуществляется стандартными конвекторами. Сотрудники банка имеют возможность индивидуально контролировать температуру в офисе внутри определенного диапазона. Все функции здания направлены на удовлетворение потребностей сотрудников и в то же время предполагают высокую эффективность использования энергии. Это достигается при управлении инженерным оборудованием «интеллектуальной» системой, которая обеспечивает оптимальный режим работы систем вентиляции, отопления и охлаждения, а также позволяет сотрудникам индивидуально регулировать параметры микроклимата непосредственно в рабочей зоне (рис. 17). Использование естественного освещения. Команда разработчиков проекта придала большое значение максимально возможному использованию дневного света. Использование естественного освещения значительно снижает эксплуатационные затраты и, кроме этого, улучшает психологический комфорт находящихся в здании людей. Каждое офисное помещение в здании «Commerzbank» расположено в соответствии с требованиями Германского строительного стандарта, который требует, чтобы все сотрудники размещались не далее чем 7,5 м от окон. Прозрачность здания и стеклянные перегородки между офисными помещениями и коридорами позволяют достичь высокого уровня освещенности дневным светом на всех рабочих местах. На каждом уровне одна из треугольных секций здания является открытой и составляет часть зимнего сада. Такая конструкция позволяет каждому офису либо иметь вид на город, либо иметь вид на атриум и сад (рис. 18).

Рисунок 18. Каждый сотрудник офиса имеет вид на зеленый участок. В данном случае это вид через атриум на один из садов

Каждый сотрудник офиса имеет вид на зеленый участок. В данном случае это вид через атриум на один из садов. Зимние сады позволяют свету проникать к внутренним стенам каждого крыла. Эти сады обеспечивают «природный вид» для сотрудников офисов и вместе с атриумом участвуют в организации естественной системы вентиляции для всего здания. Особенности конструкции Здание представляет собой равносторонний треугольник со скругленными углами шириной 60 м. Его форму составляют три секции, сочлененные с центральным атриумом.

Немецкие строители предложили конструкторское решение, предполагавшее использование железобетона в качестве основного конструкционного материала. Железобетонная конструкция дешевле на несколько миллионов долларов по сравнению со стальной, однако такое решение привело бы к необходимости размещения колонн внутри зимних садов и за счет этого к ухудшению естественной освещенности всего здания. Здание «Commerzbank» стало первым в Германии высотным зданием, в котором сталь использовалась в качестве основного конструкционного материала (рис. 19).

Применение стали вместо железобетона в конструкции высотного здания потребовало специальных противопожарных мероприятий, осуществленных немецкой компанией «BPK Brandschutz Planung Klingsch GmbH». В числе прочих мероприятий - применение спринклерной системы, обеспечивающей подачу воды даже при отключении энергии. Конструктивно эта система выполнена в виде емкостей, в которых помимо воды закачен под давлением газ. В случае пожара емкость разгерметизируется и вода под давлением разбрызгивается без дополнительного побуждения.

Для ограничения усадки существующего старого 30-этажного здания «Commerzbank», расположенного в нескольких метрах, строители производили забивку свай и заливку монолитного фундаментного основания для каждого угла в отдельности. Забивка свай производилась на 40 м до незатронутой подстилающей коренной породы (здания во Франкфурте обычно имеют фундамент на глубине 30-метрового глинистого пласта). Сплошной фундамент был создан на глубине 7,5 м, его толщина составляет 2,5–4,5 м. 111 свай диаметром 1,5–1,8 м и длиной до 48,5 м собраны по группам под каждой из колонн высотного здания (рис. 20).

Наружное освещение

Молодой немецкий дизайнер Томас Эмде (Thomas Emde), чьим средством выражения является свет и цвет, добавил окончательные штрихи к зданию, спроектированному Норманом Фостером. Схема наружного освещения, предложенная Томасом Эмде, была выбрана по итогам конкурса. Проект этой схемы наружного освещения был разработан в студии «Blendwork», в которой работали четыре профессионала: дизайнер Томас Эмде, менеджер проектов и историк-искусствовед Питер Фишер (Peter Fischer), дизайнер светового оформления Гюнтер Хекер (Gunther Hecker) и менеджер по световому дизайну Ральф Тьювен (Ralf Teuwen). Благодаря световому оформлению от Томаса Эмде особые черты первого в мире экологичного высотного здания видны ночью так же отчетливо, как и днем. При взгляде издали девять 4-этажных зимних садов, опоясывающих здание по спирали, создают впечатление прозрачности здания. Именно такую прозрачность и хотел подчеркнуть Томас Эмде при разработке схемы наружного освещения. Для этого он разместил источники рассеянного света в садах, что позволяет им ночью светиться теплым желтым светом. Он также подсветил верхние фасады здания, чтобы подчеркнуть вертикальность здания. В результате панорама ночного Франкфурта сильно изменилась. В студии «Blendwork» также было создано «Цветовое Руно» («The Color Fleece») - огромная картина в вестибюле здания. При размерах в 210 м² данное произведение является одним из самых больших в мире. То, что видит наблюдатель, зависит от его местоположения, времени суток и уровня естественной освещенности. В монографии, описывающей процесс создания данного произведения, Эмде написал о здании «Commerzbank»: «В отличие от других высотных зданий (во Франкфурте) здание Нормана Фостера создает новое двойное движение. С одной стороны, здание практически уходит в бесконечную высоту, заметно поднимаясь ввысь от земли и отрываясь от нее. В то же время само здание несет ввысь и девять садов». «Здание поднимает вместе с собой целые деревья, отрывая растения от земли, со своим пониманием близости к природе и корней в почве. Это отражает двойственность здания, поскольку оно, как и деревья, которые всегда стремятся расти ввысь, ближе к свету, тоже стремиться ввысь». «В данном случае здание „Commerzbank“ изменяет простой закон прикрепленности к земле. Природа - моделированное жизненное пространство, находящееся в движении в высоте, отражающее двойственность здания. Здание отрицает необходимость нахождения растений на земле посредством поднятия их на высоту и их приближения к свету».

Описание:

Мировой энергетический кризис 70-х годов привел, в частности, к появлению нового научно-экспериментального направления в строительстве, связанного с понятием "здание с эффективным использованием энергии". Первое такое здание было построено в 1974 году в г. Манчестере (штат Нью-Хэмпшир, США). Цель строительства этого здания, как, впрочем, и всех, последовавших за ним в рамках нового направления, заключалась в выявлении суммарного эффекта энергосбережения от использования архитектурных и инженерных решений, направленных на экономию энергетических ресурсов. В последние годы значительно увеличился объем строительства зданий различного технологического назначения с эффективным использованием энергии, и получили развитие в международной практике стандарты, правила и другие нормативные документы по проектированию и оценке энергоэффективности таких зданий (см. журнал АВОК, 1997, №№ 2, 4, 6). В России в рамках международной программы Европейской экономической комиссии ООН "Энергетическая эффективность-2000" осуществляются проекты по строительству демонстрационных зон высокой энергетической эффективности.

Научные основы проектирования энергоэффективных зданий

Ю. А. Табунщиков , президент АВОК, член-корр. Российской Академии архитектуры и строительных наук

М. М. Бродач , вице-президент АВОК, канд. техн. наук, Московский архитектурный институт

Введение

Мировой энергетический кризис 70-х годов привел, в частности, к появлению нового научно-экспериментального направления в строительстве, связанного с понятием "здание с эффективным использованием энергии". Первое такое здание было построено в 1974 году в г. Манчестере (штат Нью-Хэмпшир, США). Цель строительства этого здания, как, впрочем, и всех, последовавших за ним в рамках нового направления, заключалась в выявлении суммарного эффекта энергосбережения от использования архитектурных и инженерных решений, направленных на экономию энергетических ресурсов. В последние годы значительно увеличился объем строительства зданий различного технологического назначения с эффективным использованием энергии, и получили развитие в международной практике стандарты, правила и другие нормативные документы по проектированию и оценке энергоэффективности таких зданий (см. журнал АВОК, 1997, №№ 2, 4, 6). В России в рамках международной программы Европейской экономической комиссии ООН "Энергетическая эффективность-2000" осуществляются проекты по строительству демонстрационных зон высокой энергетической эффективности.

Вместе с тем ощущается явная нехватка информации о научных методах, на основе которых осуществляется проектирование зданий. Не менее остро ощущается также и необходимость уточнения терминологии.

Авторами предлагается использовать два понятия: энергоэффективные здания и энергоэкономичные здания. Дадим следующие определения. Энергоэффективное здание включает в себя совокупность архитектурных и инженерных решений, наилучшим образом отвечающих целям минимизации расходования энергии на обеспечение микроклимата в помещениях здания. Энергоэкономичное здание включает в себя отдельные решения или систему решений, направленных на снижение расхода энергии на обеспечение микроклимата в помещениях здания. Из приведенных определений ясно различие между энергоэффективным и энергоэкономичным зданиями. Первое есть результат выбора определенными научными методами совокупности технических решений, наилучшим образом отвечающих поставленной цели. Второе есть результат суммирования ряда энергосберегающих решений в одном объекте.

С точки зрения современной науки, задача проектирования энергоэффективных зданий относится к так называемым задачам "системного анализа" или задачам "исследования операций", поиск решения которых связан с выбором альтернативы и требует анализа сложной информации различной физической природы . Цель методов системного анализа или исследования операций - предварительное количественное обоснование оптимальных решений. Оптимальными здесь называются решения, которые по тем или иным признакам предпочтительнее всех других.

Исследование операций включает в себя три главных направления:

Построение математической модели, то есть описание процесса на языке математики;

Выбор целевой функции. Это исследование включает в себя определение ограничивающих условий и формулирование оптимизационной задачи;

Решение поставленной оптимизационной задачи.

Заметим, что принятие окончательного решения выходит за рамки исследования операций и относится к компетенции ответственного лица (чаще группы лиц), которому предоставлено право окончательного выбора и на которого возложена ответственность за этот выбор. Делая выбор, он может учитывать наряду с рекомендациями, вытекающими из математического расчета, еще ряд соображений количественного и качественного характера, которые в этих расчетах не были учтены.

Основная часть

Математическая модель и целевая функция для энергоэффективного здания

В соответствии с методологией системного анализа математическую модель теплового режима здания как единой теплоэнергетической системы целесообразно представить в виде трех взаимосвязанных моделей, более удобных для изучения :

Математической модели теплоэнергетического воздействия наружного климата на здание;

Математической модели теплоаккумуляционных характеристик оболочки здания;

Математической модели теплоэнергетического баланса помещений здания.

Подробное описание математических моделей отдельных элементов здания и здания как единой энергетической системы дано в .

Оптимизационная задача для энергоэффективного здания имеет следующее содержание: определить показатели архитектурных и инженерных решений здания, обеспечивающих минимизацию расхода энергии на создание микроклимата в помещениях здания. В обобщенном математическом виде целевую функцию для энергоэффективного здания можно записать так:

где
Q min - минимальный расход энергии на создание микроклимата в помещениях здания;
a i - показатели архитектурных и инженерных решений здания, обеспечивающих минимизацию расхода энергии.

При реальном проектировании энергоэффективное здание в большинстве случаев не будет реализовано из-за ряда ограничений, вытекающих из конкретной строительной ситуации или из-за ряда соображений количественного или качественного характера, которые не были учтены при математическом моделировании. В этом случае целесообразно ввести показатель, характеризующий степень отличия реализованного решения от оптимального. В других случаях этот же показатель может служить критерием оценки искусства проектировщика. Назовем эту величину "показателем теплоэнергетической эффективности проектного решения" и обозначим h , так что по определению

h = Q эф /Q пр

где
Q эф - расход энергии на создание микроклимата в помещениях энергоэффективного здания;
Q пр - расход энергии на создание микроклимата в помещениях здания, принятого к проектированию.

С учетом принятого разделения математической модели теплового режима здания как единой теплоэнергетической системы на три взаимосвязанных подмодели можно записать

h = h 1 h 2 h 3 ,

где
h 1 - показатель теплоэнергетической эффективности оптимального учета воздействия наружного климата на здание;
h 2 - показатель теплоэнергетической эффективности оптимального выбора тепло- и солнцезащитных характеристик наружных ограждающих конструкций;
h 3 - показатель теплоэнергетической эффективности оптимального выбора систем обеспечения микроклимата.

Оптимизация теплоэнергетического воздействия наружного климата на тепловой баланс здания

Теплоэнергетическое воздействие наружного климата на тепловой баланс здания может быть оптимизировано за счет выбора формы здания (для зданий прямоугольной формы принимаются в расчет такие параметры, как его размеры и ориентация), расположения и площадей заполнения световых проемов, регулирования фильтрационных потоков. Например, удачный выбор ориентации и размеров здания прямоугольной формы дает возможность в теплый период года уменьшить воздействие солнечной радиации на оболочку здания и, следовательно, снизить затраты на его охлаждение, а в холодный период - увеличить воздействие солнечной радиации на оболочку здания и уменьшить затраты на отопление. Аналогичные результаты будут получены при удачном выборе ориентации и размеров здания по отношению к воздействию ветра на его тепловой баланс.

Методология проектирования систем отопления, вентиляции, кондиционирования основана на расчетах тепловых и воздушных балансов здания для характерных периодов года. Например, для России этими периодами года являются: наиболее холодная пятидневка, отопительный период, самый жаркий месяц, период охлаждения, расчетный год. В этом случае оптимизация теплоэнергетического воздействия наружного климата на тепловой баланс здания за счет выбора его формы и ориентации даст следующие результаты:

Для наиболее холодной пятидневки - снижение установочной мощности системы отопления;

Для отопительного периода - снижение затрат теплоты на отопление;

Для самого жаркого месяца - снижение установочной мощности системы кондиционирования воздуха;

Для периода охлаждения - снижение затрат энергии на охлаждение здания;

Для расчетного года - снижение затрат энергии на обогрев и охлаждение здания.

В общем случае оптимизировать теплоэнергетическое воздействие наружного климата на тепловой баланс здания можно для любого характерного периода времени.

Важно отметить следующее: изменение формы здания или его размеров и ориентации с целью оптимизации влияния наружного климата на его тепловой баланс не требует изменения площадей или объема здания - они сохраняются фиксированными.

Решение задачи по выбору оптимальной формы здания приведено в , а решение задачи по выбору оптимальных размеров и ориентации здания прямоугольной формы, а также значения показателя тепловой эффективности проектного решения приведены в .

Рисунок 1 .

На рис. 1 приведен пример изменения формы здания с целью оптимизации теплоэнергетического воздействия климата на его тепловой баланс в зависимости от характерного периода года.

Авторами были проведены исследования влияния теплоэнергетического воздействия наружного климата на тепловой баланс здания за счет выбора оптимальных значений его размеров и ориентации. Расчеты проводились для климатических условий Москвы (560 с. ш.) и Ростова-на-Дону (480 с. ш.). Исходная ориентация принималась широтной, меридиональной и диагональной. В качестве объекта исследований принималось здание прямоугольной в плане формы, общей полезной площадью 1440 м 2 . В качестве целевой функции принята минимизация затрат энергии на обогрев здания в холодный период или на охлаждение здания в теплый период. Цель исследований - выявить, как количественно увеличивается показатель теплоэнергетической эффективности здания за счет оптимального учета воздействия наружного климата на тепловой баланс здания. Результаты исследований приведены в табл. 1.

Оптимизация теплоэнергетического воздействия наружного климата на тепловой баланс здания

В традиционном понимании оптимизация теплозащиты наружных ограждающих конструкций зданий - это метод вычисления толщины теплоизоляции конструкции "по минимуму приведенных затрат". Математическая модель приведенных затрат в общем случае включает в себя два показателя: затраты на производство конструкций (единовременные затраты) и затраты на их использование (эксплуатационные затраты). Расчет теплоизоляции "по минимуму приведенных затрат" является объективным методом, признанным во всем мире, но содержит в своей сущности скрытую опасность, отражающую объективную реальность существующей в стране экономической ситуации, которая может явиться непреодолимым препятствием реализации метода на практике. Это связано с использованием в методе показателей стоимости энергии и материалов. Многим специалистам памятна история со СНиП II-3-79 "Строительная теплотехника", который был разработан по заданию высших правительственных органов с целью существенного ужесточения требований к экономии топливно-энергетических ресурсов при эксплуатации зданий. Ожидалось, что главным достоинством этого документа явится введение в него метода приведенных затрат для выбора оптимальной теплозащиты ограждающих конструкций. При этом теплозащита ограждающих конструкций, включая заполнение световых проемов, должна была приниматься как наибольшая из двух величин, определяемых по санитарно-гигиеническим условиям и по минимуму приведенных затрат. Безусловно, предполагалось, что метод приведенных затрат даст большее значение теплозащиты, и это явится решением проблемы экономии топливно-энергетических ресурсов. Но... экономическая реальность складывалась таким образом, что энергия стоила дешевле газированной воды, и проектировщики при расчетах получили, что теплозащита по санитарно-гигиеническим требованиям превосходит величину, определенную по минимуму приведенных затрат. В строительном комплексе сложилась драматическая ситуация, которая усугублялась тем обстоятельством, что нельзя было выявить виновных. Метод был выбран правильно, но нельзя же было признать, что экономика социализма несостоятельна! Сегодня использование метода приведенных затрат сталкивается с другой, пока непреодолимой трудностью. Отсутствуют надежные, прогнозируемые на ближайшие 20-30 лет показатели стоимости энергии и материалов.

Вышеизложенное относится к проблеме экономической оптимизации теплозащиты ограждающих конструкций здания. Цель настоящей статьи - поиск решения проблемы теплоэнергетической оптимизации ограждающих конструкций.

Возможность решения этой проблемы в ее современном понимании и современными методами показана в ряде работ . Современное понимание означает, что будет достигнуто решение, которое с учетом принятых ограничений является наиболее предпочтительным. Современные методы - это методы исследования операций. Рассмотрим это более подробно.

К наружным ограждающим конструкциям предъявляется в общем случае достаточно большое количество требований. Высокий уровень теплозащиты в холодный период в условиях теплопередачи, близкой к стационарному режиму, высокий уровень теплоустойчивости в теплый и холодный периоды в условиях теплопередачи, близкой к периодическому режиму, низкая энергоемкость внутренних слоев при колебаниях теплового потока внутри помещения, высокая степень воздухонепроницаемости, низкая влагоемкость и т.д. и т.п.

Безусловно, при проектировании стремятся удовлетворить, в первую очередь, главным требованиям. Практика показывает, что количество таких требований, как правило, не более двух. В первую очередь, это теплозащита и теплоустойчивость. Здесь открываются большие возможности для оптимизации. Сущность ее состоит в том, что надо сконструировать методом исследования операций ограждающую конструкцию, которая оптимальным образом удовлетворяла бы требуемым (нормативным) значениям теплозащиты и теплоустойчивости.

В решена задача определения оптимального расположения слоев материалов в многослойной ограждающей конструкции. Дано подробное решение задачи и показано, что в зависимости от порядка расположения слоев материала величина теплоустойчивости конструкции может меняться в три раза.

В решена задача подбора материала для многослойной ограждающей конструкции заданной фиксированной толщины, обеспечивающей наибольшее затухание наружных тепловых воздействий. Получено решение: наибольшее затухание обеспечивает материал, имеющий меньшую теплопроводность и большую объемную теплоемкость. Следствие решения: для районов с жарким климатом целесообразно выбирать конструкцию с меньшими значениями теплопроводности материалов, а для районов с холодным климатом - с большими значениями коэффициентов теплоусвоения материалов.

В решена задача определения предельных значений теплозащиты наружных ограждающих конструкций помещения при заданном значении солнцезащиты окон и заданной кратности воздухообмена. Помещение не оборудовано установкой кондиционирования. В результате решения получены следующие интересные выводы:

Теплозащита ограждающих конструкций не влияет на температурный режим помещения при определенных значениях солнцезащиты окон и кратности воздухообмена;

Увеличение теплозащиты наружных ограждающих конструкций приводит к ухудшению теплового режима помещения, если теплозащита окон недостаточна и кратность воздухообмена невелика.

Последний результат требует особой внимательности от проектировщиков, которые используют наружные ограждающие конструкции с эффективной теплоизоляцией для зданий, проектируемых для строительства в теплом климате.

В содержится ряд интересных решений по оптимизации теплозащиты наружных ограждающих конструкций зданий с кондиционированием воздуха, для окон с теплоотражающей пленкой, для зданий с периодическим отоплением и т.д.

Оптимизация тепловой нагрузки на систему климатизации помещений здания

Специалисту, занимающемуся проектированием и расчетом систем отопления, вентиляции и кондиционирования воздуха, очевидно, что задачей проектирования и расчета является определение двух взаимосвязанных показателей: количества энергии и способа ее распределения (раздачи). По существу, речь идет о том, чтобы рассчитать и запроектировать такую систему управления расходом и распределением энергии, чтобы обеспечить при использовании ее минимальный расход. Таким образом, задача оптимизации теплоэнергетической нагрузки на систему обеспечения теплового режима здания будет относиться к так называемым задачам на оптимальное управление и получит следующее содержание: найти такое управление расходом энергии Q(t) на обогрев помещения, удовлетворяющее уравнению теплового баланса помещения и соответствующим начальным и конечным тепловым условиям, для которого расход энергии

имеет наименьшее возможное значение.

Управление Q(t) , дающее решение поставленной задачи, называется оптимальным управлением, а соответствующая траектория изменения температуры внутреннего воздуха называется оптимальной траекторией.

Суть решения: время разогрева помещения должно быть минимизировано.

Если иметь в виду, что реальное помещение есть совокупность теплоемких ограждающих конструкций и теплоемкого внутреннего оборудования (мебели), то процесс нагрева предполагает повышение температуры всей совокупности элементов помещения, то есть ограждающих конструкций и оборудования. Элементы высокой тепловой аккумуляции потребуют большего времени на разогрев. Следовательно, минимизация времени разогрева помещения достигается минимизацией времени разогрева элементов высокой тепловой аккумуляции. Можно сразу указать два простых случая: время разогрева помещения будет стремиться к минимуму, если внутренние поверхности ограждающих конструкций имеют низкие значения коэффициента теплоусвоения материалов, а также если имеет место высокая интенсивность конвективного теплообмена между внутренним воздухом и внутренними поверхностями ограждающих конструкций. Оптимальный результат достигается, если совпадают оба случая.

Правильность этого решения получила подтверждение во время обсуждения доклада авторов по данной теме в Датском техническом университете. Датские специалисты сообщили, что во время реставрации католического собора с массивными каменными креслами для прихожан с целью экономии энергии на обогрев собора, используя понижение температуры внутреннего воздуха в ночное время, ими было принято решение разогрев собора начинать с разогрева электрическими подогревателями массивных каменных кресел. Экономия энергии составила 30-35%.

Авторы статьи проделали численные расчеты расхода энергии для помещения площадью 24 м 2 и объемом 72 м 3 с двумя наружными ограждающими конструкциями и окном с двойным остеклением площадью 3 м 2 . Рассмотрены три варианта наружных ограждающих конструкций:

Кирпичная кладка толщиной 0,56 м, коэффициент теплоусвоения 8,02 Вт/(м 2 o С);

Керамзитобетонная панель толщиной 0,23 м, коэффициент теплоусвоения 3,36 т/(м 2 С);

Панель типа "сэндвич" с утеплителем из плиточного пенопласта с обшивкой с двух сторон металлическими листами, толщина панели 0,052 м, коэффициент теплоусвоения 0,77 Вт/(м 2 o С).

Для сопоставления результатов расчетов ограждающие конструкции имеют одинаковое термическое сопротивление. Кратность воздухообмена принята 3 1/ч. Температура наружного воздуха -5 o С.

Начальные условия: температура внутреннего воздуха 10 o С, температура внутренних поверхностей ограждающих конструкций 10 o С.

Конечные условия: температура внутреннего воздуха 22 o С, температура внутренних поверхностей ограждающих конструкций 14 o С.

Чтобы обеспечить минимизацию времени разогрева, было принято, что разогрев осуществляется конвективными тепловыми струями, настилающимися на внутренние поверхности ограждающих конструкций (рис. 3). Интенсивность конвективного теплообмена соответствовала следующим трем значениям коэффициентов конвективного теплообмена:

a 1 =3,5 Вт/(м 2 o С); a 2 =10,5 Вт/(м 2 o С); a 3 = 21 Вт/(м 2 o С).

Результаты расчетов представлены в табл. 2.

Таблица 2
Результаты расчета затрат энергии на разогрев помещения
Варианты Время разогрева (t, ч) и затраты энергии (Q, Вт ч) на разогрев помещения при значениях коэффициентов конвективноготеплообмена
a 1 =3,5 Вт/(м 2 o C) a 2 =10,5 Вт/(м 2 o C) a 3 =21 Вт/(м 2 o C)
a Q Экономия энергии, % a Q Экономия энергии, % a Q Экономия энергии, %
Э 1 Э 2 Э 1 Э 2 Э 1 Э 2
Кирпичная кладка из сплошного кирпича на цементно-песчаном растворе 9,7 58100 0 0 3,5 20970 64 0 1,2 7160 88 0
Керамзитобетонная панель 2,5 35200 0 40 0,9 12560 64 40 0,31 4330 88 40
Панель типа "Сэндвич" с утеплителем из плиточного пенопласта 0,6 15650 0 56 0,2 4715 70 62 0,08 1940 88 55

В табл. 2 использованы условные обозначения:
Q - затраты энергии на разогрев, включая теплопотери через окна и за счет воздухообмена;
Э 1 - экономия энергии за счет повышения интенсивности конвективного теплообмена при одной и той же ограждающей конструкции;
Э 2 - экономия энергии за счет уменьшения теплоаккумуляционных показателей ограждающей конструкции (уменьшение коэффициента теплоусвоения).

Получен невероятный с точки зрения "здравого смысла" результат: максимальное значение экономии энергии при разогреве помещения при стремлении минимизировать время разогрева достигает 97%.

Такой результат был обеспечен выбором оптимальной стратегии распределения расходуемой энергии в помещениях, то есть нагрев начинался с разогрева теплоемких ограждающих конструкций. Практическую обоснованность такого подхода подтверждает использование потолочных теплоизлучателей "FRICO AB", производимых в Швеции (см. ИБ "Энергосбережение", 1996, № 9). Принципиальное отличие обогревателей "FRICO AB" состоит в том, что лучистое тепло направлено на нагрев пола помещения, а затем косвенным путем идет нагрев воздуха помещения. Применение потолочных теплоизлучателей "FRICO AB" обеспечивает экономию энергии до 50% по сравнению с конвективными методами обогрева.

Рассмотрение табл. 2 позволяет сделать следующие выводы:

Экономия энергии при разогреве помещения за счет увеличения интенсивности конвективного теплообмена в 3 раза достигает 64-70%, а при увеличении в 6 раз - 88%. При этом время разогрева уменьшается в среднем в 3 раза;

Экономия энергии при разогреве помещения при уменьшении теплоаккумуляционных показателей ограждающей конструкции (уменьшение коэффициента теплоусвоения) в 2,4 раза достигает 40%, а в 10,4 раза - достигает 55-62%. При этом время разогрева уменьшается в среднем соответственно в 3,8 и 16 раз.

Заключение

Авторы настоящей статьи не ставили своей целью подробное изложение методологии и математических методов для проектирования энергоэффективных зданий. Создание практически реализуемых в проектной практике методов проектирования энергоэффективных зданий требует дополнительной значительной работы и усилий коллектива специалистов.

Цель настоящей статьи - продемонстрировать заинтересованным специалистам, что в настоящее время существуют основы научных методов проектирования энергоэффективных зданий и попытаться дать им терминологическое определение. Авторы в полной мере отдают себе отчет, что ряд определений кому-то из коллег может показаться спорным и что отдельные положения нуждаются в дополнительном разъяснении. Поэтому мы с благодарностью примем пожелания и выслушаем все конструктивные замечания. Учитывая важность затронутых в статье вопросов для решения актуальных задач энергосбережения, мы готовы организовать встречу всех заинтересованных лиц для дальнейшей дискуссии. Если статья вызвала у специалистов интерес и натолкнула кого-то из них на некоторые раздумья, авторы будут считать, что достигли поставленной цели.

Литература

1. Моисеев Н.Н. Математические задачи системного анализа. - М.: Наука, 1981.

2. Вентцель Е.С. Исследование операций. Задачи, принципы, методология. - М.:Наука, 1988.

3. Табунщиков Ю.А. Основы математического моделирования теплового режима здания как единой теплоэнергетической системы. Докторская диссертация. - М.: НИИСФ, 1983.

4. Табунщиков Ю.А., Хромец Д.Ю., Матросов Ю.А. Тепловая защита ограждающих конструкций зданий и сооружений. - М.: Стройиздат, 1986.

5. Tabunschikov Y. Mathematical models of thermal conditions in buildings, CRC Press, USA 1993.

6. Jurobic S.A. An investigation of the minimization of building energy load through optimization techniques. Los Angeles scientific center, IMB Corporation, Los Angeles, California.

7. Бродач М.М. Изопериметрическая оптимизация солнечной энергоактивности зданий. - Гелиотехника 2, Ташкент, 1990.

8. Бродач М.М. Энергетический паспорт зданий / АВОК, 1993, № 1/2.

9. Klaus Daniels, "The Technology of Ecological Building", Birkhauser-Verlag fur Arhitektur, Basel, 1997.

Энергетическая стратегия энергосбережения в зданиях должна строиться на формировании и реализации стимулов экономного использования природных ресурсов. Главным мотивом энергосбережения должно быть сохранение окружающей естественной среды и даже ее улучшение, а также защита интересов будущих поколений в сохранении традиционных природных источников энергии, но уже как сырья для химической и медицинской промышленности.

Строительство современных многоэтажных и многофункциональных зданий является молодой отраслью. Такой же молодой как и ультрапрогрессивные отрасли второй половины ХХ века - самолетостроение и вычислительная техника. Однако строительство за последние годы по сравнению с ними претерпело не столь значительные изменения.

Изучение и решение проблем энергосбережения, возникшие при строительстве современных зданий, стали мощным импульсом к изучению проблем микроклимата и климатизации здания. Этим и объясняется имеющая место широкая номенклатура зданий на основе различных концепций энергетически эффективных и экологически чистых технологий.

В основе концепций проектирования современных зданий лежит идея того, что качество окружающей нас среды оказывает непосредственное влияние на качество нашей жизни как дома, так и на рабочем месте или в местах общего пользования, составляющих основу наших городов.

Концепции имеют собственное наименование. Наиболее известные из них:

  • энергоэффективное здание(energy efficient building);
  • пассивное здание (passive building);
  • умное здание (smart building);
  • здоровое здание (healthy building);
  • интеллектуальное здание (intelligent building);
  • здание с низким энергопотреблением (low energy building);
  • здание с ультранизким энергопотреблением (ultralow energy building);
  • здание высоких технологий (high-tech building);
  • биоклиматическая архитектура (bioclimatic architecture);
  • экологическинейтральное здание;
  • sustainable building(сохранение окружающей среды);
  • advanced building(перевод с англ. -усовершенствованное здание).

Современное здание, с точки зрения эффективности, характеризуется потребительскими системами показателей. Одна из главных потребительских систем показателей здания - система показателей энергетической эффективности здания.

Современный технически образованный человек выберет систему энергоэффективности жилья, при оценке его как будущий владелец, если на первый план им выдвигается необходимость экономии энергии.

Энергоэффективное здание - это здание, в котором экономия энергоресурсов достигается за счет применения инновационных решений, технически осуществимых, экономически обоснованных, приемлемых с экологической и социальной точек зрения и не изменяющих привычный образ жизни.

Энергоэффективные дома, по сути, становятся европейским стандартом . Наибольшим практическим опытом реализации проектов энергоэффективных пассивных домов обладают:

  • страны Западной Европы, и в первую очередь, Германия;
  • Швеция: 2-х этажные жилые солнечные дома из дерева в г. Карльстаде (59° с.ш.), расположены так, чтобы не было взаимного затенения;

  • в Хельсинки,Финляндия, построен энергоэффективный жилой район;
  • в Лондоне,Великобритания, успешно реализован проект энергоэффективного общественного здания мэрии;

    в американской практике в "холодных" районах, давно уже строятся суперизолированные дома с тройным остеклением северных фасадов и усиленной теплоизоляцией наружных поверхностей;

    в Канаде, накоплен опыт строительства суперизолированных домов с малым потреблением энергии на отопление, построены солнечные дома в провинции Квебек, в провинции Саскачеван, климатические условия которой характеризуются зимней расчетной температурой -34,5°С;

  • в России условиях Юго-Западной Сибири с 1981года построены солнечные дома по 3-м вариантам.

Сегодня, для строительства в России энергоэффективных и экологически чистых зданий, по мнению специалистов, есть два стимулирующих обстоятельства :

  1. При конкурентной борьбе на рынке жилых и общественных зданий всё больше главную роль играют показатели потребительских качеств здания, определяющими из которых являются: обеспечение качества микроклимата и энергоэффективность здания;
  2. Инвесторы приходят к выводу о целесообразности сдачи площадей в аренду, а не о целесообразности их продажи, из-за растущей инфляции и изменений стоимости на жилье и общественные помещения, поэтому они заинтересованы во внедрении энергосберегающих технологий при строительстве зданий и в создании собственных управляющих компаний по эксплуатации этих зданий.

В России вполне реализуемы многие составляющие концепции энергоэффективного дома. Так, при реконструкции жилого фонда, успешно применяются технологии первоочередных мероприятий по повышению энергоэффективности зданий, таких как:

  • утепление фасадов с использованием современных теплоизоляционных материалов;
  • установка современных высокоэффективных оконных систем с применением схем принудительной вентиляции.

Начальное вложение в практическое внедрение энергосберегающих технологий стоит недешево, но большие капитальные затраты можно считать долгосрочной и весьма надежной инвестицией , т.к. они окупаются за счет дальнейших низких эксплуатационных расходов. Расходы на эксплуатацию, после внедрения энергосберегающих технологий, снижаются на 25-30%. К сожалению, эта невысокая разница служит аргументом для тех, кто необоснованно занижает сумму первоначальных вложений в энергоффективность здания при строительстве и реконструкции. С другой стороны, чересчур высокие начальные инвестиции не смогут окупиться за всё время эксплуатации здания.

В последнее время, в связи с обострением проблем экономии энергоресурсов и защиты окружающей среды, резко возрос интерес к использованию нетрадиционных видов энергии , таких как солнечная энергия, ветровая энергия и др. Возобновляемые источники энергии: солнце, ветер и др., с давних пор используются человеком. Солнечная энергия, применяемая в концепциях проектирования современного здания - пассивный дом и солнечный дом , оказывает существенное влияние на снижение потребления энергии от традиционных источников - нагревательных и охладительных устройств.

Отличительными чертами пассивного здания являются:

  • компактность и хорошая изоляция наружных ограждающих частей здания, в 2-3 раза превышающая нормативные показатели сопротивления теплопередаче;
  • пассивное использование солнечной энергии, с обязательным остеклением южной части здания и учетом особенностей затенения;
  • энергоэффективное остекление с сопротивлением теплопередачи оконных конструкций не менее 0,8 м.°С/Вт;
  • воздухонепроницаемость, с допустимой утечкой воздуха через неуплотненные соединения не выше 0.6 объема помещения в час;
  • пассивное предварительное нагревание свежего воздуха, поступающего в дом по подземным трубам, предварительно нагреваясь от соприкосновения с почвой почти до 5°C, даже в холодные зимние дни;
  • высокоэффективный воздухообмен: более 80%;
  • подача горячей воды с использованием регенеративных источников энергии: например, солнечных коллекторов;
  • применение термической массы из теплоаккумулирующих материалов для сохранения тепла в холодные ночи и для поддержания прохлады в жаркие дни.

Теплоаккумулирующая среда, применяемая в термической массе пассивного дома, представлена тремя основными видами: камни, вода и эвтектические соли (с фазовым превращением). Особенность теплоаккумулирующих материалов в том, что они обладают высокой тепловой инерцией.

Тепловая инерция - это способность материалов или среды поглощать тепло и сохранять его по мере нагрева. Если окружающая температура понижается, то накопленное тепло поступает в окружающую среду, а сами материалы или среда охлаждаются. Но для охлаждения или нагрева до изменившейся температуры окружающего воздуха требуется некоторое время.

Солнечная энергия, попав внутрь дома, может передаваться на поверхность термической теплоаккумулирующей массы, от других, освещенных солнцем поверхностей, за счет отражения и теплового излучения. Стремитесь располагать тепловую массу во всех освещаемых солнцем поверхностях. При поглощении теплоаккумулирующими материалами солнечной энергии, происходит повышение температуры на поверхности материалов. Энергия, поглощенная поверхностью, передается внутрь материала путем теплопроводности.

Поглощательная способность поверхности теплоаккумулирующих материалов различна и зависит от :

Термическая масса , на которую падает прямое солнечное излучение, должна иметь значительную площадь без чрезмерной толщины, поэтому тонкие теплоаккумулирующие плиты эффективнее толстых. Наиболее эффективная толщина для бетонной теплоаккумулирующей плиты — 100 мм, увеличение толщины более 150 мм является бессмысленным. Наиболее эффективная толщина для древесины — 25 мм.

Полы в пассивном доме должны иметь темную окраску, т.к. темный цвет, поглощает солнечное излучение, а не отражает его, и делает сам пол более теплым и легко поддающимся чистке.

Термическая масса стен и потолков должна быть светлой, т.к. темная стена, быстро нагреваясь, создаст направленный вверх термосифонный воздушный поток, приводящий к перегреву помещения.

Наиболее эффективными аккумулирующими контейнерами являются составляющие здание стены, перекрытия, крыши, внутренние перегородки, а также мебель. К источникам энергии в жилом доме можно отнести кухонную плиту, работающие бытовые электроприборы, лампы освещения, людей и животных, т.е. все те поверхности тел, которые имеют температуру выше или ниже температуры воздуха и излучают энергию в виде волн различной длины. Например, спокойно сидящий человек имеет тепловую мощность 120 ватт. Суммарно эти тепловыделения достигают немалых величин, сравнимых с мощностью систем отопления.

Термическая масса(необходимой толщины и площади), поглощая тепло в жаркое время суток, охлаждает помещение, а при понижении температуры воздуха и поступлении этого воздуха в здание, либо за счет естественной циркуляции через проемы, например вентиляционные отверстия или окна, либо принудительно при помощи вентиляторов, термическая масса, медленно охлаждаясь, путем конвективного теплообмена, нагревает воздух в помещении. За тот период времени, пока термическая масса, обладающая инерцией, снова нагреется до температуры окружающего воздуха, необходимости в кондиционировании воздуха в помещении не будет.

Энергоэффективное здание - это здание с низким энергопотреблением, в котором правильно и успешно выполнены меры по сбережению энергии.

Если здание не нуждается в поставках извне энергии для отопления и не имеет отопительных приборов, то оно называется «пассивным» . Это значит, что тепла, выделяемого электроприборами, горячей водой и находящимися в здании людьми, получаемого от солнечного света через окна и на наружные стены, а также вырабатываемого солнечными коллекторами, расположенными на доме, достаточно для его обогрева и нагрева горячей воды.

Если же здание не просто обеспечивает себя достаточной энергией для собственного нормального функционирования, но и производит её излишки с помощью автономных возобновляемых источников энергии (фотоэлектрические панели, ветроустановки и пр.), которые могут поставляться в электрическую сеть, то оно называется «активным».

Многие меры энергосбережения невозможно или трудно применить в уже построенном доме. Утепление наружных стен и других ограждающих конструкций дома сложно и требует капитального ремонта. Утепление окон в доме наиболее эффективно, если производится в отношении всех, а не отдельных окон, включая окна на лестницах и в других общих помещениях дома. Систему вентиляции с рекуперацией довольно трудно встроить в дома существующей конструкции. Даже такую простую меру, как распространенные повсеместно в западных странах регуляторы на батареях отопления в большинстве домов часто невозможно применить, потому что этого не позволяет система разводки отопительных труб.

В то же время, если дом спроектировать в соответствии с принципами энергоэффективности, потребление энергии в нем можно уменьшить в несколько раз. Тысячи и десятки тысяч таких домов уже построены в Германии, Швеции и других странах. В России тоже уже построены многие десятки таких зданий. Затраты на их возведение превышают затраты на строительство обычных домов не более чем на 10 %. Однако они быстро окупаются за счет экономии энергии.

В пассивных домах нет отопительной системы. В любом здании энергию выделяют осветительные, бытовые и другие электроприборы, она приносится горячей водой, выделяется во время приготовления пищи, и, наконец, просто выделяется телами находящихся в здании людей. Сокращение потерь тепла зданием в три раза по сравнению с существующими нормами достаточно, чтобы зимой было тепло без отопления даже на широте Москвы или Санкт-Петербурга.

Но добиться этого не так-то просто. Недостаточно сделать стены дома в три раза более толстыми. Тепло теряется через окна, уносится теплым воздухом через вентиляцию и теплыми сточными водами через канализацию. Более того, если применять энергоэффективные осветительные и бытовые электроприборы, а также правильно их использовать, как рассказано выше, то в здании будет выделяться меньше энергии в виде тепла. Поэтому необходим комплекс мер, чтобы сделать здание по-настоящему энергоэффективным.

Во-первых, нужно привлекать дополнительные возможности поступления энергии в дом. Таких возможностей немного, но они вносят свой вклад в энергосбережение:

– нагревание воды или другого теплоносителя солнцем в солнечных батареях на крыше здания для отопления или дополнительного нагрева воды, как это описано в этого курса;

– проектирование здания с максимальным использованием естественного обогрева солнечным излучением, с большими окнами на южную сторону, как это описано в этого курса;

– правильное планирование зеленых насаждений вокруг здания, как это описано в этого курса.

Во-вторых, необходимо существенно уменьшить потери тепла зданием. Здесь список возможностей очень большой, и они описаны в этого курса.

От формы здания тоже зависит его способность сохранять тепло. Потери тепла пропорциональны площади поверхности, через которую они происходят. Поэтому чем меньше суммарная площадь поверхности стен, крыши и пола первого этажа, тем меньше тепла будет уходить из дома. Всякие выступы и ниши, уступы стен и другие архитектурные элементы, конечно, украшают дом, но увеличивают потери тепла. Самую маленькую площадь поверхности из геометрических тел равного объема имеет шар. Не случайно в фантастических фильмах на чужих планетах жилища людей имеют сферическую форму. Однако нам более привычны и удобны прямоугольные помещения. Из прямоугольных параллелепипедов равного объема наименьшую площадь поверхности имеет куб. Поэтому самым энергоэффективным зданием будет здание в форме, близкой кубу.

Использование теплоизоляционных материалов с необходимыми толщинами для наружных конструкций здания может оказаться недостаточным, чтобы избавиться от необходимости отапливать помещение. Следует помнить, что даже один металлический элемент (который очень хорошо проводит тепло), например, гвоздь, забитый перпендикулярно поверхности стены, создаст «мостик холода» и может свести на нет ваши усилия по утеплению дома.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении