Найди себя - Женский портал

Паяльная паста для smd какая лучше. Паста для пайки: какие бывают виды данного состава и их особенности. Какой должна быть

Даже если тебе никогда в жизни не придётся самостоятельно иметь дело с чип-деталями, надо понимать, что 99% всей современной электроники создаётся именно на их основе. Поэтому каждый уважающий себя радиолюбитель должен хотя бы в общих чертах представлять SMD-техпроцесс.
В предыдущем уроке мы уже познакомились с так называемыми SMD-компонентами (чип-компонентами). Сейчас же пришло время узнать, как осуществляется их монтаж и пайка.
Можно припаять SMD-деталь и с помощью самого обычного припоя и паяльника с тонким жалом. Процесс состоит из трёх шагов:

Наносим припой на одну контактную площадку;
- с помощью пинцета устанавливаем чип-компонент на нужную позицию и, удерживая деталь пинцетом, прогреваем один из его выводов. Деталь зафиксирована, пинцет можно убрать;
- припаиваем второй вывод компонента.

Ручная пайка SMD-компонентов

Примерно таким же образом можно паять SMD-транзисторы и микросхемы.

Но ручная пайка – это очень долгий и кропотливый процесс, поэтому применяется только радиолюбителями для создания единичных конструкций. На крупных радиозаводах всё стараются автоматизировать. Поэтому там никто не паяет каждую деталь по отдельности паяльником, процесс совершенно другой.

Ты уже знаешь, что такое припой: гибкая оловянно-свинцовая проволока, которая при нагреве паяльником расплавляется, а после остывания застывает и надёжно фиксирует вывод радиодетали, обеспечивая при этом электрический контакт. Но припой может быть не только в виде оловянно-свинцового прутка. Можно создать припой в виде пасты, которая так и называется – паяльная паста. Паста содержит в своём составе и флюс, и мельчайшие частички олова. При нагреве паста расплавляется, а после остывания застывает, обеспечивая электрический и механический контакт.

Паяльная паста наносится на все контактные площадки. При производстве опытных образцов и мелкосерийных партий пасту наносят с помощью ручных дозаторов: шприцом, например, или даже зубочисткой. Но при крупносерийном производстве используется другая технология нанесения пасты. Сначала изготавливается трафарет: тонкий лист из нержавеющей стали, в котором имеются отверстия, точно совпадающие с контактными площадками печатной платы. Трафарет прижимается к печатной плате, сверху наносится слой паяльной пасты и разравнивается специальным шпателем. Затем трафарет поднимается, и таким образом буквально за пару секунд паяльная паста оказывается нанесённой на все контакты печатной платы.

Печатная плата с нанесённой на контактные площадки паяльной пастой

Теперь на плату можно устанавливать компоненты. SMD-компонент можно аккуратно установить на нужные контактные площадки. В радиолюбительстве установку компонентов производят вручную с помощью обычного или вакуумного пинцета, а на крупных производствах эту операцию выполняют роботы, которые могут установить до нескольких сотен деталей в минуту! Благодаря тому, что паяльная паста вязкая, компонент как бы фиксируется на своём месте, и это очень удобно.

После установки всех SMD-компонентов происходит пайка платы. Плата помещается в специальную печь, где за несколько минут нагревается примерно до 300С. Паяльная паста расплавляется, а после остывания обеспечивает механический и электрический контакт компонентов. Для того, чтобы избежать термоударов, важно настроить термопрофиль, то есть скорость нагрева и охлаждения печатной платы. В промышленности используются специальные многозонные печи, в каждой камере которых поддерживается строго заданная температура. Печатная плата, двигаясь по конвейеру, последовательно проходит все зоны печи.

Паяльные печи: промышленная (слева) и для мелкосерийной пайки (справа)

В мелкосерийном и опытном производстве используются компактные печки, в которых платы «запекаются» по одной. Радиолюбители и вовсе иногда приспосабливают для этих целей бытовые духовые шкафы, или нагревают печатную плату горячим воздухом с помощью промышленного фена. Конечно, качество пайки при таких кустарных методах очень нестабильно, но и требования к надёжности радиолюбительских конструкций обычно не высокие.

После окончания пайки плату промывают от остатков флюса, входящего в состав паяльной пасты, сушат и проверяют. Если в конструкции имеются DIP-компоненты, их припаивают в последнюю очередь, и даже на крупных радиозаводах этот процесс производится, как правило, вручную. Дело в том, что автоматизировать DIP-процесс очень сложно и дорого, именно поэтому современная радиоэлектроника в основном проектируется на SMD-компонентах.

Всем привет.

Сегодняшний обзор будет посвящен паяльной пасте MECHANIC XG-50 (XG-500), приобретенной мною на просторах eBay. Желание обзавестись пастой для пайки было у меня давно, но поскольку в ассортименте моего инструмента не было и паяльного фена, то эта покупка постоянно отодвигалась на задний план. Но после того, как я наткнулся на бюджетный технический фен, было принято решение о приобретении совместно с ним и паяльной пасты. Выбор был сделан спонтанно, в основном опираясь на данные со страничек продавца, и пал на пасту MECHANIC XG-50.

Несмотря на случайность выбора, продавец сработал оперативно и отправил посылку в день совершения заказа. К тому же на нее был предоставлен трек, правда, не полноценный - отслеживался он только по территории Китая. Если кому-то интересно как это было, то информацию по перемещению можно посмотреть .

Спустя примерно месяц после совершения заказа, в местном почтовом отделении мне выдали небольшой конвертик внутри которого и находилась заказанная мною паяльная паста. На более-менее качественную упаковку продавец поскупился, баночка с пастой не была обмотана даже пупыркой.

Поставляется паста в пластиковой баночке с красивой яркой полиграфией. Помимо надписей на крышечке можно увидеть голографическую наклейку с изображением какого-то мужика, подтверждающую тот факт, что паста подлинная (теоретически):

Здесь же красуется надпись «For export», а сама крышечка надежно зафиксирована на баночке при помощи термоусадочной пленки.

Если перевернуть баночку, то на нее дне можно узнать дату изготовления пасты и ее срок годности. Все паяльные пасты (в том числе и обозреваемая) довольно токсичны из-за чего рекомендуется использовать их вдали от мест приема пищи. Так же настоятельно рекомендуется не вдыхать испарения от пасты во время проведения работ (по возможности) или использовать респираторы. Хранить пасту следует в прохладном месте, так как с течением времени флюс, входящий в состав пасты, высыхает. Именно этим моментом и обусловлен столь короткий срок годности.


По окружности всей баночки так же наклеена наклейка с множеством разнообразных надписей на китайском языке. Из самого интересного и наиболее понятного - ее характеристики:

Product: XG-50 (будь это не экспортный вариант, было бы написано XG-500);
Alloy: Sn63/Pb37;
Microns: 25-45um.


Из этих обозначений становится понятен состав пасты - 63% олова и 37% cвинца (припой), смешанные с флюсом (неизвестно каким) и различными добавками. Размеры частиц очень мелкие 25-45 микрон. Температура плавления такой пасты находится около значения в 180 градусов. Основное предназначение - использование для пайки мелких (SMD) элементов.

Удалив защитную термоусадку и свинтив крышку, видим защиту из фольги и плотной бумаги, значение которой - предотвращение протечки пасты, а так же недопущение его засыхания во время хранения. Защитная пленка надежна впаяна в пластик банки и украшена изображением того самого мужика, что и голографическая наклейка на крышечке.


Оторвав пленку, можно увидеть пасту.


Как видно, паста занимает меньше 50% объема баночки. С виду она сера, в меру густая. При нанесении не растекается, держит форму. При нагреве эти характеристики кардинально меняются в противоположную сторону, так что наносить ее следует в небольших количествах и очень аккуратно.


Вес баночки с пастой - 36 грамм.


В названии лота можно увидеть обозначение «42g» и, если честно, я думал, что это и есть масса. Но поскольку баночка была надежно запечатана, то не думаю, что имел место недолив. Скорее всего 36 грамм - реальное значение, а что такое «42g» останется для меня загадкой навсегда. К сожалению, в самом объявлении указания на массу нет:(

Больше ничего интересного во внешнем виде как баночки, так и самой пасты нет. А значит можно переходить к ее практическим испытаниям. Для начала я просто нанес немного пасты на плату от преждевременно скончавшихся беспроводных наушников.


Потом, воспользовавшись феном вот из этого обзора, разогрел ее до нужной температуры. Время не засекал, но на вскидку на то, чтобы паста из серой массы превратилась в блестящий шарик ушло секунд 20-30. Результат:


Результат более крупно:


Как видно, получилось очень даже неплохо. Припой «скрутился» в блестящий шарик. Попробовал его сковырнуть - не поддался, закрепился на плате надежно. Весь этот процесс сопровождался замером температуры. Но за результат гарантии 100% не дам. Поскольку все это делал в одиночку, то не очень удобно было держать термометр, плату и фен. Так что с фотографией температуры немного припоздал, плюс к этому жало термометра находилось сбоку от участка с пастой. Поэтому температура в 135,9 градусов немного ниже реального значения. Во время переходы припоя из состояния пасты в состояние твердого шарика, краем глаза заметил значение в 145 градусов. Так что реальная температура плавления, думаю, градусов 160.


Ну а теперь о самом главном. Я покупал как пасту, так и фен для восстановления датчиков парктроника. У них болезнь - под герметик попадает вода, что со временем выводит их из строя. Вскрытый мертвый датчик:


Причина неработоспособности более крупно:


Восстанавливаются они заменой умерших SMD элементов. Но поскольку все они очень мелкие, да и паять приходится внутри датчика (выступающие бока датчика мешают), то сделать это при помощи обычного паяльника и проволочного припоя у меня никак не получалось:(

Итак, прикладываем отсутствующий элемент и максимально аккуратно намазываем пастой места пайки (но вообще более правильно - сперва намазывать контактные площадки и затем уже прикладывать припаиваемый элемент):


Ну и начинаем греть. Результат:


Более крупно:


Причем на все ушла максимум минута:) А ведь до этого я массу времени потратил воюя с датчиком, используя обычный паяльник и припой. Но так у меня ничего в тот раз и не вышло.

Подводя итог всему, что тут было написано, хочу сказать, что паста меня порадовала. Ее удобно использовать для пайки мелких элементов и для проведения работ в труднодоступных местах. Качественные характеристики меня так же вполне устроили. К слову, датчик после восстановления был залит герметиком и протестирован на работоспособность - никаких проблем, все заработало как надо. Так что если кто-то пользуется подобными вещами, то MECHANIC XG-50 (XG-500) можно брать смело - со своими функциями она справляется неплохо. С учетом небольшой стоимости и малым расходом пасты, баночки на год хватит точно, а потом ее все-равно надо менять, т.к. засохнет:)

НА этом, пожалуй, все. Спасибо за внимание и потраченное время.

Планирую купить +59 Добавить в избранное Обзор понравился +54 +98

Пайка деталей к поверхности печатной платы осуществляется главным образом пи помощи паяльной пасты. Состав паст может сильно различаться, но в основном главные компоненты - припой, флюс и связующее вещество. Любая паста для пайки внешне представляет собой густую и вязкую смесь химических веществ.

Особенные качества материалов для пайки

Известно, что соединения элементов при помощи пайки, возможно при использовании материала с меньшей температурой плавления. Для простых любительских схем до сих пор применяют припой совместно с флюсом или кислотой. Паста, содержащая в себе оба компонента, а также различные добавки, значительно ускоряет процесс пайки сложных печатных плат c smd элементами. Широко используется на производствах электроники.

Рассмотрим основные составляющие пасты для пайки:

  • порошкообразный припой разного качества дробления;
  • флюс;
  • связующие компоненты;
  • разнообразные добавки и активаторы.

В качестве материала припоя выбирают разнообразные сплавы с оловом, свинцом и серебром. В последнее время наиболее актуальными являются без свинцовые паяльные пасты.

В составе каждой паяльной пасты используется флюс, играющий роль обезжиривателя. Кроме того необходимо связующее клейкое вещество, которое облегчает установку и фиксацию smd компонентов на печатные платы. Чем больший размер платы и насыщеннее элементная плотность, тем важнее использовать более вязкие паяльные пасты.

Большое влияние на качество пайки smd компонентов влияет срок годности пасты. Так как в составе обычно находятся активные химические компоненты, срок использования и хранения ее совсем небольшой, не более 6 месяцев. При хранении и транспортировке необходимо сохранять температуру от +2 до +10. Только при соблюдении всех условий возможна качественная пайка.

Разнообразие паяльных паст

В зависимости от использования различных компонентов выделяют несколько видов паяльных паст:

  • отмывочные;
  • без отмывочные;
  • водорастворимые;
  • галогеносодержащие;
  • без содержания галогенов.

Свойства меняются от использования флюса, входящего в ее состав. Любая паста, которая не смывается водой, содержит в себе канифоль. Для промывки изделий от такой пасты необходимо использовать растворитель.

Общее правило для содержащихся элементов и smd компонентов - чем лучше паяемость, тем меньше надежность. Соблюдение компромисса между этими важными свойствами - залог эффективного функционирования. Применение галогеносодержащих паст значительно увеличивает технологичность, но несколько снижает надежность.

Способы применения паст для пайки

Для того чтобы получить качественное и надежное соединение smd элементов на печатной плате необходимо выполнить определенные действия:

  • качественная очистка и обезжиривание печатной платы с последующим просушиванием;
  • фиксирование платы в горизонтальном положении;
  • равномерное и тщательное нанесение паяльной пасты в места соединения;
  • установка мелких и smd элементов на поверхность платы; для более надежной пайки рекомендуется дополнительно нанести пасту на ножки микросхем;
  • при нижнем подогреве платы, включается фен и осторожным потоком теплого воздуха прогревается верхняя часть с установленными элементами;
  • после того как испариться флюс, температура фена увеличивается до температуры плавления припоя;
  • визуально контролируется процесс пайки;
  • после остывания, производится окончательная промывка печатной платы.

Основные хитрости качественной пайки

Для того чтобы качественно произвести соединение элементов при помощи пасты для пайки, следует позаботиться о некоторых моментах. В первую очередь важно очистить и обезжирить плату, особенно если заметны окислы, или плата долгое время лежала без использования. При этом желательно залудить все контактные площадки легкоплавким припоем.

Паяльная паста должна иметь удобную консистенцию. То есть она не должна быть слишком жидкой или слишком густой. Больше всего подходит «сметанная» структура, которая будет хорошо смачивать поверхность. Смачиваемость играет огромную роль в надежности и качественности паяного соединения.

При пайке smd элементов важно нанести тонкий слой пасты. Толстый слой может замкнуть выводы микросхем. Пайка простых элементов такой тонкости не подразумевает.

Если печатная плата имеет значительные размеры желательно использовать нижний подогрев феном, утюгом или при помощи специальных средств температурой от 150 градусов по Цельсию. Если это не предусмотреть, возможно коробление платы.

Излишки и остатки припоя легко удаляются паяльником с разнообразными насадками. Для примера, для удаления остатков веществ, применяемых при пайке, между ножек микросхем удобно использовать жало «волна».

Михаил Нижник , генеральный директор, ООО «Группа МЕТТАТРОН»

Автор обобщает сведения о свойствах и поведении паст при пайке, опираясь на обширный опыт работы с паяльными пастами фирмы «KOKI» . Статья будет интересна технологу, работающему на линии поверхностного монтажа.

ВИДЫ ПАЯЛЬНЫХ ПАСТ

Пасты классифицируются по типу флюсов (см. рис. 1).

"Водорастворимую" паяльную пасту (остатки флюса после пайки растворяются водой), требующую обязательной отмывки из-за содержания активного флюса (см. таблицу 1), отмывают последовательно обычной, дистиллированной и деионизированной водой, причем на каждом этапе применяют струйную отмывку или ультразвук. Для "водорастворимых" паст, не требующих обязательной отмывки, процесс ограничивается дистиллированной водой.

Рис. 1. Классификация паяльных паст

Таблица 1. Классификация флюсов
Активность флюса (% содержание галогенов) Канифольные Rosin (RO) Синтетические Resin (RE) Органические Organic (OR) Необходимость отмывки
Низкая (0%) ROL0 REL0 ORL0 Нет
Низкая (<0,5%) ROL1 REL1 ORL1 Нет
Средняя (0%) ROM0 REM0 ORM0 Рекомендуется
Средняя (0,5 – 2,0%) ROM1 REM1 ORM1 Рекомендуется
Высокая (0%) ROH0 REH0 ORH0 Обязательно
Высокая (>2,0%) Обязательно

С пастами, требующими отмывки специальными жидкостями, ситуация иная. Вне зависимости от наличия в составе галогенов, такие пасты основаны на канифольных флюсах, поэтому для их отмывки после пайки рекомендуется применять растворитель типа HCFC и омыляющий реагент. Потом отмывочные жидкости, в свою очередь, отмываются дистиллированной, а затем деионизированной водой.

Вместе с тем, многие паяльные пасты, не содержащие галогенов, отмываются трудно и оставляют на поверхности плат белесый остаток флюса. При этом стойкость к осадке считается важнее отмываемости.

Большинство паяльных паст, не требующих отмывки, освобождают производство от этого технологического процесса. Флюсы таких паст защищают паяное соединение от коррозии подобно лаку. Сосредоточимся на пастах, не требующих отмывки: они наиболее технологичны.

Рис. 2. Состав паяльных паст

Часто говорят: безотмывочные пасты не должны содержать галогенов. Надо четко уяснить, что если в документации на пасту указано «Требует отмывки», то мыть надо обязательно, а если такой маркировки нет, то вопрос решается исходя из дополнительных требований к изделию: внешний вид, нанесение лака.

В Японии, например, галогенсодержащие пасты (0,2%) в процессах без отмывки после пайки гораздо популярнее безгалогенных. Галогенсодержащие паяльные пасты сравнительно более технологичны, например, по паяемости, но часто уступают безгалогенным пастам по надежности, что проявляется в снижении сопротивления изоляции готового монтажа. Это объясняется более высокой химической активностью остатков флюса. Таким образом, паяемость и надежность, в большинстве случаев, - взаимоисключающие факторы.

Рис. 3. Основные характеристики, учитываемые при разработке или выборе паяльных паст

В идеале, для пайки без отмывки нужна паста без галогенов, но с паяемостью, как у галогенсодержащей пасты.

Трудность заключается в повышении химической активности безгалогенных безотмывочных паст. В большинстве таких паст в качестве активатора вместо галогенсодержащих соединений используются органические кислоты, причем чем меньше молекулярный вес кислоты, тем больше способность активации. Поскольку активирующее действие органических кислот гораздо слабее, чем у галогенсодержащих компонентов, стараются ввести в систему флюса пару десятков относительно активных органических кислот.

Вместе с тем такие высокоактивные органические кислоты поглощают влагу. Это чревато: оставшаяся в остатках флюса на поверхности подложки кислота при взаимодействии с водой ионизируется, что уменьшает поверхностное сопротивление изоляции и ведет к электромиграции.

В системах активации в паяльных пастах (здесь автор опирается на технические данные по пастам фирмы «KOKI») используются менее гигроскопичные органические кислоты и специально разработанный безионный активатор. Эта специальная система не диссоциирует на ионы, ее электрические свойства стабильны, а активирующая способность не уступает галогенам. Благодаря высокой температуре активации, безионный активатор в сочетании с тщательно подобранными органическими кислотами делает активацию на стадии оплавления более длительной. В результате паяемость улучшается не в ущерб надежности.

Вот примеры популярных типов паст:

  • паяльная паста для высокоскоростной печати;
  • паяльная паста с высокой смачивающей способностью;
  • паяльная паста для автоматического внутрисхемного тестирования;
  • универсальная паста с чрезвычайно длительным временем жизни на трафарете.
Таблица 2. Жизненный цикл паяльной пасты на производстве
Стадии жизненного цикла пасты Контролируемые характеристики
Хранение Неизменность вязкости и паяемости
Нанесение пасты Тонкая печать с шагом 0,5 мм и сверхтонкая - с шагом 0,4 мм. Время жизни после нанесения. Растекаемость пасты. Отделяемость от стенок апертур трафарета. Скорость печати (нормальная - до 100 мм/с, скоростная - 200 мм/с и более). Тиксотропный индекс (изменение вязкости в процессе оплавления). Полнота заполнения апертур. Размазываемость пасты по трафарету (паста должна образовывать плотный валик перед ракелем).
Монтаж компонентов Клейкость. Стойкость пасты к осадке (растеканию).
Оплавление Образование перемычек (короткие замыкания). Наличие частиц припоя в остатках флюса. Выворачивание и отрыв компонентов (tombstoning). Смачиваемость (образование галтели припоя).
Контроль качества Остатки флюса должны обеспечивать бесперебойную работу АОИ - автоматической оптической инспекции. Для паяльных паст, предназначенных для последующего ICT-контроля, остатки флюса должны быть пластичными и оставаться на зондах.
Качество отмывки При необходимости отмывки от остатков флюса она должна быть полной, без белого налета.

СОСТАВ ПАЯЛЬНЫХ ПАСТ

Паяльные пасты состоят из припоя и флюса (см. рис. 2). При выборе комплекса припой + флюс для паяльной пасты учитывают характеристики, приведенные на рис. 3.

Порошок припоя

Для производства порошка припоя используют методы газового и центробежного распыления. Особенности метода газового распыления:

Получение частиц малого размера;

Легкость управления процессом образования окисной пленки на поверхности частиц;

Низкий уровень окисления частиц припоя.

Полученные частицы порошка припоя имеют размеры 1–100 мкм. На распределение размеров частиц припоя и их диаметр влияет скорость подачи припоя, скорость вращения шпинделя и содержание кислорода.

Рис. 4. Получение порошка припоя газовым распылением

Порошок получают в емкости высотой около 5 м и диаметром 3 м, которая заполнена азотом и кислородом очень малой плотности (см. рис. 4). Слитки припоя плавят в тигле, расположенном в верхней части резервуара. Расплавленный припой капает вниз на шпиндель, вращающийся с большой скоростью. Когда капли припоя попадают на шпиндель, происходит разбрызгивание припоя в направлении стенок резервуара, при этом припой приобретает сферическую форму и затвердевает до того, как эти частицы достигнут стенки резервуара.

Рис. 5. Степень окисления частиц припоя в зависимости от их размера

Затем порошковый припой попадает на сортировочное сито, где лучше всего использовать метод двойной сортировки порошка припоя. На первой стадии порошок сортируют струей азота от воздуходувки. При этом отсеиваются частицы с размерами меньше нужного. Затем порошок идет на сито, где задерживаются частицы с размерами, превышающими заданные величины.

Паяльные пасты с размером частиц 20–38 мкм применяются при монтаже печатных плат с шагом апертур трафарета до 0,4 мм, а с размером 20–50 мкм - для шага от 0,5 мм.

На качество порошков влияют два фактора.

Распределение размера частиц влияет на реологию паяльных паст, печать, растекаемость, характер отделения от трафарета и показатели осадки паст. Минимальный размер апертур трафарета зависит от минимального размера контактных площадок на печатной плате, при этом максимальный размер апертуры меньше или равен размеру контактной площадки. Нужный размер частиц подбирайте из расчета, что в самую маленькую апертуру трафарета должно гарантированно уместиться не менее 5 частиц припоя, как показано на рис. 12.

Флюс

Второй компонент паяльной пасты - это флюс. Роль флюса в паяльных пастах та же, что и при пайке «волной припоя», или селективной пайке. Флюс должен:

Удалить оксидную пленку и предотвратить повторное окисление в процессе пайки. Металлические поверхности в условиях высоких температур при оплавлении быстро окисляются. Твердые компоненты флюса при этих температурах размягчаются и переходят в жидкое состояние, покрывая и защищая спаиваемые поверхности от повторного окисления. Флюс восстанавливает металл и удаляет оксидную пленку с поверхности контактов электронных компонентов, финишного покрытия печатной платы и поверхности порошка припоя;

Удалить загрязнения. Впрочем, флюс не справится с большим количеством пото-жировых отпечатков, поэтому лучше плату брать в руки в перчатках;

Обеспечить стабильность вязкости пасты, требующуюся при печати и оплавлении.

Основные флюсующие компоненты и их роль указаны в таблице 3.

Таблица 3. Основные флюсующие компоненты и их роль
Группа Вещества На что влияют Пояснение
Активаторы Аминхлоргидрат. Органические кислоты и т.д. Активирующая способность (паяемость). Надежность (поверхностное сопротивление остатков флюса, уровень электромиграции и коррозии). Срок хранения. Именно эти компоненты в основном обеспечивают эффективное удаление окислов. Активаторы не только размягчают и переводят в жидкую форму древесные смолы, они также смачивают поверхность металла и реагируют с окислами.
Канифоли Древесная канифоль. Гидрированная канифоль. Диспропорционированная канифоль. Полимеризующаяся канифоль. Канифоль, денатурированная фенолом. Канифоль, денатурированная эфиром. Печать. Паяемость. Стойкость к осадке. Клейкость. Цвет остатков флюса. Контролепригодность. Эти виды канифоли размягчаются на стадии предварительного нагрева (температура размягчения 80–130°С) и растекаются по поверхности частиц припоя и по подложке. Фирма «KOKI» обычно использует натуральные древесные канифоли. В зависимости от вида обработки они имеют различный цвет (чаще всего желтый или желто-оранжевый), активирующую способность и температуру размягчения. Для управления технологическими свойствами (осадкостойкостью, клейкостью и т. д.), а также свойствами остатка (его цветом, пластичностью, способностью обеспечивать тестируемость схемы) обычно в состав флюса входит не менее 2–3 различных видов канифоли.
Тиксотропные материалы Пчелиный воск. Гидрированное касторовое масло. Алифатические амиды. Четкость печати. Вязкость. Тиксотропность. Стойкость к осадке. Запах. Отмываемость. Эти компоненты позволяют обеспечить стойкость пасты к напряжениям сдвига, возникающим в процессе печати и установки компонентов на плату, и восстанавливают вязкость пасты после нанесения ее на подложку. Дополнительные компоненты обеспечивают легкое отделение пасты от трафарета, что улучшает качество печати.

Рассмотрим теперь факторы, влияющие на качество печати.

Рис. 6. Факторы, влияющие на качество печати

ПРИНТЕРЫ

Электронная промышленность развивается, и плотность монтажа компонентов на печатной плате растет, а размер компонентов уменьшается. Из-за этого требования к характеристикам и качеству паяльных паст ужесточаются.

Критичный фактор при монтаже печатных плат с высокой плотностью монтажа компонентов - выбор оборудования и параметров печати, а также качество и характеристики паяльных паст. Это означает, что даже если подобрана потенциально очень хорошая паяльная паста, результат может оказаться удручающим только из-за неправильной установки рабочих параметров принтера или неудачного подбора ракеля и способа изготовления трафарета.

Факторы, определяющие качество печати, перечислены на рисунке 6. Рассмотрим их подробнее.

Трафареты

Способы изготовления трафаретов (см. рис. 7):

Химическое травление;

Лазерная резка;

Гальванопластика.

Прежде использовались трафареты, полученные химическим травлением, в силу их относительной дешевизны. Однако форма апертур таких трафаретов не позволяет получать качественную печать при размере апертур менее 0,5 мм.

Трафареты, изготовленные лазерной резкой, имеют меньший размер апертур, но на стенках апертур остается окал, получившийся в результате плавления металла. Без дополнительной обработки такие трафареты невозможно использовать для апертур шириной менее 0,4 мм или под корпуса BGA c диаметрами площадок 0,25–0,3 мм. Эта проблема легко решается путем электрополировки трафаретов, которая убирает шероховатость со стенок апертур, что позволяет использовать такие трафареты при размере апертур до 0,2 мм.

Третий метод - гальванопластика - дает трафареты с размером апертур до 0,1 мм. Используется крайне редко, потому что такой размер апертур практически не используется, а стоимость производства высока.

Толщина трафарета определяется минимальными размерами и шагом между апертурами. Чем тоньше трафарет, тем лучше результаты при печати, поскольку тонкие трафареты вызывают меньшее напряжение сдвига в пасте при отделении от подложки (см. рис. 8).

Рис. 8. Чем тоньше шаблон, тем меньше сдвигается паста при отделении от подложки

Желательно, чтобы размер апертуры был несколько меньше площадки на печатной плате, чтобы скомпенсировать растяжение трафарета, допуски на совмещение и осадку паяльной пасты. Пример апертуры под контактную площадку вывода корпуса QFP (шаг 0,5 мм) приводится на рисунке 9.


Рис. 11. В отверстиях со скругленными углами адгезия между пастой и стенками отверстий меньше


Рис. 12. В самое маленькое отверстие трафарета должны вписываться от 4 до 5 самых больших шариков припоя

Геометрическая форма апертур сильно влияет на число дефектов пайки. Поэтому к изготовлению трафаретов нужно подходит очень ответственно, как на этапе конструирования, так и на этапе изготовления.

Правила расчета размеров апертур иллюстрирует рисунок 10. Рисунок 11 показывает, что при использовании апертур со скругленными углами уменьшается адгезия между пастой и стенками апертур при отделении трафарета от подложки, что уменьшает искажение отпечатка.

Что касается минимального размера апертур, то не менее 5 самых больших шариков припоя должны вписываться в самую маленькую апертуру по ее меньшей стороне (см. рис. 12).

Ракели

Ракели бывают резиновыми и металлическими. Резиновые ракели подразделяются по форме на квадратные, плоские и сабельные (см. рис. 13). Нельзя сказать, какой из ракелей лучше: от рабочего угла ракеля зависит растекаемость пасты, а хорошая растекаемость дает должное заполнение каждой апертуры паяльной пастой.

Рабочий угол сабельного ракеля составляет 70–80°. Поскольку сила, направленная вниз, относительно невелика, такой ракель больше подходит для паст с низкой вязкостью.

У квадратного ракеля рабочий угол составляет 45°. Он оказывает высокое давление на паяльную пасту, поэтому его лучше применять для высоковязких паст. Если работать этим ракелем с низковязкими пастами, то паста затечет под трафарет (см. рис. 14).

Рабочий угол плоского ракеля - 50–60°. Изменяя угол наклона, можно работать с пастами различной вязкости.

При работе с резиновыми ракелями надо постоянно следить, чтобы рабочая кромка всегда была острой. При износе кромки приходится увеличивать нажим, чтобы избежать размазывания пасты. При этом возрастает и давление, под которым происходит заполнение апертур пастой, что увеличивает трение между частицами припоя и неблагоприятно влияет на отделяемость пасты от стенок апертур.

В отличие от резиновых, жесткие металлические ракели не изнашиваются, работают долго и не захватывают пасту из отверстий.

Здравствуйте. В сегодняшнем обзоре я проведу сравнение двух паяльных паст - BEST BST-328 с температурой плавления 183°C и SODA SD-528T, температура плавления которой заявлена в 138°C. Если это вам интересно – приглашаю под кат.

Заказ был сделан 28 июля и пасты отправились ко мне двумя пакетами. Первой, 16 августа, прибыла паста BEST BST-328:

Поэтому именно в таком порядке мы и будем их сравнивать.

Краткие характеристики со страницы товара в магазине:

Brand Name: BEST
Model number: BST-328
Size: 35*18mm
Composition: Sn63/Pb37
Melting point: 183°C
The best cold storage temperature: 5--10°C
Package includes:

1 x BST-328 50g Tin Paste Lead solder


Паста поставляется в прозрачной пластиковой банке, затянутой плёнкой:

Снимаем плёнку:

Взвесим банку:

Да. До заявленных 50 грамм – далеко. Учитывая, что банка сделана из толстого и прочного пластика – можно ещё отнять грамм десять, получив нетто в 30 грамм.

Откроем баночку:

Посмотрим консистенцию пасты:

Паста густая, тянущаяся, обладает отличной липкостью, очень хорошо наносится.

Теперь перейдем к паяльной пасте .

Попав в город в один день – паста SODA SD-528T, заплутала в почтовых отделениях и пришла к финишу только 18 августа:

Краткие характеристики паяльной пасты:

Specification:
Element: Sn42Bi58
Melting point: 138℃
Inside diameter: 22.6mm
External diameter: 25.2mm
Length: 120mm
Package includes:

1 x 100g Solder Paste


Эта паяльная паста расфасована не в баночку, а в шприц:

К шприцу прилагается игла для точного нанесения пасты:

Поршень – довольно легко перемещается:

Надавить на него можно любым подходящим предметом.

Количество пасты в шприце:

Взвесим:

Здесь – без обмана. Отбросив вес шприца – мы наверняка получим 100 грамм.

Перейдем к консистенции пасты:

Паста более жидкая, чем BEST, не тянущаяся, липкость слабая, при нанесении – паста немного растекается.

Перейдём к испытаниям.

Проверим, при какой температуре пасты начинают плавится.

Начнем с BEST BST-328 с заявленной температурой плавления в 183°C. Наносим пасту, прикрепив рядом датчик температуры:

Паста начала плавится при температуре:

Теперь проверим температуру плавления у SODA SD-528T, с заявленными 138℃. Также наносим пасту:

И смотрим:

Именно при этой температуре паста начала расплавляться.

Проверим как паяют эти пасты.

Я взял плату:

Наносим пасту BEST:

Паста отлично прилипает к плате.

И греем феном:

Флюса на плате практически не осталось.

Теперь наносим пасту SODA в таком же количестве:

Она не липнет, а растекается по площадкам.

Греем феном:

В результате плата буквально залита флюсом, которого в этой пасте намного больше, чем припоя. Я пробовал поднять температуру до уровня пайки пастой BEST, думая, что флюс подвыгорит. Но не тут-то было. Весь флюс остался на месте. Ну и количество припоя в пасте SODA вы сами можете увидеть в сравнении с BEST.

Попробуем что-нибудь припаять.

Опять первой у нас идет паяльная паста BEST BST-328:

При пайке даже не пришлось удерживать деталь. Она прилипла к пасте и не делала попыток побега.)))

Теперь используем паяльную пасту SODA SD-528T:

Не держать деталь – не получится. Несмотря на слабый обдув – деталька совершила попытку к бегству, что неудивительно, ведь липкость у SODA совсем никакая. При этом припой распадался на маленькие капли, похожие на капли ртути и загрязнял собой плату. Хотя температура фена при пайке, естественно была ниже, чем при пайке пастой BEST.

Теперь пробуем отмыть плату от флюса и растёкшегося припоя SODA. Берём обычный спирт и моем:

Флюс от пасты BEST удалился без труда. Полностью удалить флюс от SODA – не удалось.

Кроме спирта у меня не оказалось никакой другой смывки. Да обычно спирта и хватало, и для наружного, и для внутреннего применения…)))

Поэтому я соскоблил флюс зубочисткой:

И затем, переводя зря ценный продукт – я промыл плату спиртом еще раз:

Поскольку лупу в тот день я с собой не взял, то решил, что всё же удалил всё. Но не тут-то было! Сбросив фото на компьютер и посмотрев их, я прямо расчувствовался! Посмотрите какие красивые шарики припоя выложены в ряд вдоль детали! Красота! Я впервые вижу такое поведение припоя. На вторых слева площадках, на которых я тоже использовал пасту SODA – это явление тоже отлично заметно.

Подведём итоги. Паяльная паста BEST BST-328 показала себя с хорошей стороны. Она вполне подходит для монтажа SMD компонентов и перекатки BGA микросхем. Благодаря липкости – она отлично удерживается на площадках. Единственный минус – вес пасты на 20 грамм меньше заявленного.

Пасту же SODA SD-528T, благодаря низкой температуре плавления, можно использовать для выпаивания элементов из плат с безсвинцовым припоем. Смешиваясь с ним – паста понизит температуру его плавления. А также для пайки деталей, которые лучше сильно не нагревать, например, SMD светодиодов. Но при этом обращать особое внимание на очистку платы от трудносмываемого флюса и загадочных шариков припоя. Цена за такую пасту сильно высока.

Спасибо за внимание.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +53 Добавить в избранное Обзор понравился +53 +91

Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении